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ABSTRACT

Consonants are recognized to dominate higher frequencies of the 

speech spectrum and to carry more information than vowels, but 

both demonstrate quasi-steady state (QSS) and transient 

components, such as vowel to consonant transitions. Fixed filters 

somewhat separate these effects, but probably not optimally, 

given diverse words, speakers, and situations, and we suggest 

that important speech information is contained in transient 

speech components. To study the relative intelligibility of 

transient vs. steady-state components, we employed an 

algorithm based on time-frequency analysis to extract QSS 

energy from the speech signal, leaving a residual signal of 

predominantly transient components. Psychometric functions 

were measured for speech recognition of processed and 

unprocessed monosyllabic words. The transient components 

were found to account for approximately 2% of the energy of the 

original speech, yet were nearly equally intelligible. As 

hypothesized, the QSS components contained much greater 

energy while providing significantly less intelligibility. 

1. INTRODUCTION 

Traditional methods of studying the auditory system and 

speech intelligibility have emphasized frequency-domain 

techniques. While it is generally recognized that voicing and 

steady vowel sounds are largely low frequency and that 

consonants are dominated by higher frequencies, no single 

cutoff frequency uniquely separates them. Information on 

transitions between and within vowel sounds is even more 

difficult to isolate using fixed-frequency filters. Since speech 

articulators cannot move instantly from one position to another, 

initial portions of vowels often show brief frequency shifts that 

differ among different consonant-vowel (CV) combinations [1]. 

Conventional vowel-consonant classification and concepts of 

spectral composition de-emphasize this transition information. 

Most human sensory systems are sensitive to abrupt changes 

in stimuli. We suggest that the auditory system shows the same 

characteristics and that it is particularly sensitive to time-varying 

frequency edges, which probably reflect the transition 

components in speech. Hence, although these transitions 

represent a small proportion of the total speech energy, they may 

be critical to speech perception. 

The purpose of this project is to isolate and characterize 

transition information in speech, with the goal of using this 

information to enhance the intelligibility of speech in noise. This 

paper describes a method using time-varying filters to identify 

two speech components: a quasi-steady-state (QSS) component 

representing primarily vowels and hubs of consonants and a 

transient component primarily representing transitions between 

and within vowels. The energy and intelligibility of these two 

components are compared to the energy and intelligibility of the 

original speech.  

Many investigators have addressed the problem of 

identifying the start and end of phonemes or word segments for 

automated speech recognition, but only a few studies have 

focused specifically on transient components in speech. 

Yegnanarayana et al. proposed an iterative algorithm for 

decomposition of excitation signals into periodic and aperiodic 

components to improve the performance of formant synthesis 

[2]. Zhu and Alwan showed that variable frame-rate speech 

processing can improve the performance of automated 

recognition of noisy speech [3]. They used constant duration 

frames but increased the frame rate when speech models showed 

that the speech was changing rapidly. Yu and Chan 

characterized transitional behavior by the onset time and growth 

rate of each low frequency harmonic component of the transient 

speech segment [4]. Daudet and Torresani described a method to 

estimate tonal, transient, and stochastic components in audio 

signals using a modulated cosine transform and a wavelet 

transform as a step to improve audio coding [5]. Although these 

researchers investigated the detection of speech transient 

information, they did not address the relation of the transient 

information to speech intelligibility. 

Our approach used time-varying bandpass filters (TVBF) to 

remove predominately steady-state energy from the speech 

signal [6],[7],[8]. The filters were based on an algorithm 

described by Rao and Kumaresan, who developed a method to 

represent a speech signal as a product of components [9]. 

Section 2 of the paper summarizes the filtering method and 

explains how the center frequency and bandwidth of the 

bandpass filters were determined. Psychometric methods to 

evaluate the intelligibility of transient and original speech are 

also described. Results presented in Section 3 include relative 

energy and intelligibility measures of the transient components 

obtained using mono-syllable words. The implications of the 

findings as an approach to the enhancement of speech 

intelligibility are discussed in Section 4. 

2. METHODS 

Digital speech signals were down-sampled from 44100 Hz to 

11025 Hz and highpass filtered at 700 Hz. The low frequency 

part of the spectrum was removed for reasons discussed later in 

Methods. This region mostly represents voicing and first formant 
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information, whereas most of the intelligibility-bearing spectrum 

of vowels and nearly all consonant spectral power fall above 

approximately 500 Hz [10]. Because the interest in this study 

was in speech intelligibility and because the maximum word 

recognition rate (PBmax) of highpass filtered (HPF) speech was 

the same as the original speech (verified by our experimental 

measurements of intelligibility as summarized in Fig. 3 and 

Table II) ), we used the HPF speech to begin our analysis. 

We assume that the HPF speech is a superposition of QSS 

and transient components, xHPF(t) = xQSS(t) + xtran(t), where 

xHPF(t), xQSS(t), and xtran(t) are the HPF speech, QSS, and 

transient components, respectively. The QSS component is the 

component that the filter algorithm is intended to remove, and 

we expect it to include most of the energy in vowels and hubs of 

consonants. The transient component is the signal that remains 

after xQSS(t) has been removed. 

Three time-varying bandpass filters (TVBF) were used to 

extract QSS energy from the HPF speech. Each TVBF was 

implemented as an FIR filter of order 150 with center frequency 

and bandwidth determined from the output of a tracking filter, 

which included an all-zero filter (AZF) followed by a single-

pole dynamic tracking filter (DTF) [9]. Frequency and amplitude 

of the tracked component (output of the DTF) were estimated 

using linear prediction in the spectral domain (LPSD) [9]. The 

center frequency of each DTF tracked one spectral band of the 

speech signal. The zeros of the corresponding AZF were set to 

the frequencies being tracked by the other DTFs to minimize the 

energy at those frequencies appearing at the DTF input. The pole 

of the DTF was set to the frequency being tracked by that DTF.  

The center frequency of the DTF output determined the 

TVBF center frequency. The bandwidth of the TVBF was 

calculated from the speech+noise-to-noise ratio (SNNR) using  
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where n(t) is a reference noise signal recorded from a silent part 

of speech, s(t) is the speech+noise signal (AM information from 

LPSD), B is a maximum bandwidth parameter, and  is a filter 

activation threshold [11]. If the amplitude of a tracked 

component is large, the corresponding TVBF has a wide 

bandwidth, and if the amplitude is small, the filter has a narrow 

bandwidth. If the SNNR falls below threshold (SNNR <  ), the 

bandwidth is set to zero making the filter output zero. The 

bandwidth increases asymptotically from 0 to the maximum 

value.

In pilot studies with unfiltered speech, the adaptation of the 

TVBF was found to be dominated by low-frequency energy. 

With highpass filtering at 700 Hz., the TVBF were more 

effective in extracting QSS energy from higher frequencies. As 

stated earlier, the low frequencies have little influence on 

intelligibility, and their removal did not affect the intelligibility 

of the speech. The QSS component was obtained as the sum of 

the outputs of the three TVBF, and the transient component was 

obtained by subtracting the QSS component from the HPF 

speech signal.  

Each filter is characterized by two parameters: the maximum 

bandwidth B and the activation threshold , which is the 

speech+noise-to-noise power at which the filter is activated. The 

maximum bandwidth must be large enough to capture most of 

the energy in the spectral band being tracked but small enough 

to be restricted to a single band. The activation threshold is 

based on the ratio of speech+noise-to-noise power in a spectral 

band. It must be small enough to assure that the filter is active 

during a QSS sound and large enough to not be active during 

speech transitions. 

Pilot tests with a preliminary word set were used to 

determine the maximum bandwidths and bandwidth thresholds 

of the TVBF that most effectively removed QSS energy from the 

HPF speech. The bandwidth parameters were systemically 

varied between 700 to 1100 Hz and the bandwidth threshold 

between 5 to 18 dB, and intelligibility of the transient 

component was assessed qualitatively. A bandwidth threshold of 

15 dB and maximum bandwidth of 900 Hz. provided the lowest 

energy in the resulting transient components while maintaining 

good intelligibility, and those parameters were used for the 

results presented here. 

To evaluate the relative intelligibility of transient and QSS 

components, psychometric functions to show growth of 

intelligibility for original, HPF, transient, and QSS components 

as signal amplitude increased were determined. Three hundred 

consonant-vowel-consonant (CVC) words from the NU-6 word 

lists were processed as described above to provide components 

for each word [12]. Test words were presented in a quiet 

background to five volunteer subjects with negative otologic 

histories and hearing sensitivity of 15 dB HL or better by 

conventional audiometry (250 – 8 kHz). Subjects sat in a sound-

attenuated booth, and test words were delivered manually 

though headphones. Subjects were asked to repeat the words 

presented, and the number of errors was recorded by skilled 

examiners under supervision of coauthor JDD, a certified 

clinical audiologist. For each component, stimuli were presented 

at five intensity levels from 0% recognition until recognition did 

not increase or reached 100%.

Recognition results for each subject (five data points) were 

fit to an error function, using the nonlinear least-squares fit 

routine ‘lsqcurvefit’ (MATLAB, The Mathworks, Inc.). The 

function minimum was set to zero, and estimates of the 

maximum (PBmax or maximum word recognition rate), midpoint 

(50% recognition), and slope (measured by the standard 

deviation parameter of the error function) were obtained. The 

mean squared difference between the fitted function and the 

original data divided by the total mean square of the data (R2)

was calculated to assess the adequacy of the fit, with R2 > 0.8 

being taken to indicate a satisfactory fit.  

The parameters obtained for the original, HPF, transient and 

QSS versions of the words were tested for significant differences 

across versions. Because the data were skewed, a Friedman test 

was used as a non-parametric analysis of variance, followed by 

Wilcoxon paired comparisons for significant Friedman’s results. 

Parameters were averaged across subjects for summary graphs. 

3. RESULTS 

An example of decomposition of a speech signal is 

illustrated in Fig. 1 and 2. The monosyllable word “pike”, 

represented phonetically as /paIk/, spoken by a female speaker 

was decomposed into QSS and transient components as 

described above. The original speech, HPF speech, QSS, and 
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transient components are shown in Fig. 1. The energy in the 

HPF speech is 16% of the energy in the original speech and the 

energy in the QSS component is 87% of the energy in the HPF 

speech (14% of the original speech energy). The QSS 

component is dominated by the vowel /aI/, from approximately 

0.07 to 0.17sec. The remaining 13% of the HPF energy is in the 

transient component (2% of the original speech energy) which 

includes energy associated with the noise burst accompanying 

the articulatory release of /p/ from approximately 0.01 to 0.07 

sec., and the articulatory release of /k/ at around 0.38 sec. 

Figure 1. Waveforms of speech signal “pike” : (a) original 

speech; (b) HPF speech; (c) QSS component; (d) transient 

component

The sound of the QSS component was very garbled and 

difficult to identify as the word “pike”. On the contrary, the 

transient component was perceptually similar to the HPF speech, 

despite having much less energy. 

Time-frequency plots of the signal spectra, calculated using 

a 25 msec. Hamming window, are shown in Fig. 2. The 

spectrograms are linearly scaled because this scaling shows 

differences between transient and QSS spectra more clearly than 

a dB scale, and the original speech spectrum is not shown in this 

figure because this spectrum is dominated by large low-

frequency energy, making it difficult to keep scale levels 

identical to the other plots. Most of the sustained vowel energy 

is included in the QSS component, and the transient component 

primarily includes energy at the beginning and end of the QSS 

component. In particular, the transient component includes 

spectral characteristics of both the /p/ and /k/ releases, as well as 

formant transitions from the /p/ release into the vowel /aI/. The 

location of the spectral energy in these transients contributes to 

the perception of place of articulation for both the consonants 

and the vowel. 

When this word was processed with three fixed bandpass 

filters (center frequencies and bandwidths to best match the 

center frequencies and bandwidths that were observed in the 

TVBFs), the sum of the filter outputs (corresponding to the QSS 

component using the TVBF) contained 95% of the energy in the 

HPF speech, and it was highly intelligible. The remaining 5% of 

the signal energy was in the residual component, and it was 

essentially unintelligible, illustrating that the results obtained 

depend on the use of time-varying rather than fixed filters. 

Figure 2. Time-frequency plots of speech components : (a) HPF 

speech; (b) QSS component; (c) transient component. 

These results were typical of all of the words tested. Table I 

shows the energy in the HPF, transient, and QSS components 

averaged over the 300 CVC words, as a fraction of the energy in 

the original speech. The transient components averaged 2% of 

the original speech energy (18% of the HPF speech energy), and 

the QSS component averaged 18% of the original speech energy 

(82% of the HPF speech energy). The QSS component had 

loudness approximately equal to the HPF speech, but the 

transient component sounded less loud, as would be expected 

due to the lower energy. 

TABLE I 

Mean of energy in the QSS and transient components of mono-

syllable words relative to energy in the HPF speech and in the 

original speech.  Standard deviation in parenthesis. 

 QSS Transient 

% of HPF speech 82% (6.7) 18% (6.7) 

% of original speech 12% (5.5) 2% (0.9) 

Each word recognition growth function was based on 50 

words, 10 at each of 5 intensities. Each subject was tested with 

four word versions (original, HPF, QSS, and transient), resulting 

in each subject listening to 200 words. Word recognition rates 

were successfully fit to error functions. Of the 20 sets of data (4 

different word versions for each of 5 subjects), 18 were fit with 

R2 > 0.9 and 2 with R2 between 0.8 and 0.9. The error function 

parameters for each word version were then averaged across 

subjects, and a composite growth function for each word version 

was generated from the averaged parameters. The upper graph in 

Fig. 3 shows the composite growth functions with unadjusted 

speech level (the components were tested with relative energies 

as determined by the algorithm) on the abscissa. HPF was 

recognized at similar speech levels and had the same PBmax as 

original speech, despite having less energy. The transient 

component was recognized at higher unadjusted speech levels 

but had approximately the same PBmax. The QSS component was 

recognized at levels similar to the transient component but had 

much lower PBmax.

The lower graph in Fig. 3 shows growth functions with 

speech levels adjusted to compensate for the different 

component energies (that is, 0 dB represents the same energy 

level in each component.). Original and transient speech were 

recognized at similar adjusted speech levels (similar absolute 

energies), while HPF was recognized at lower relative energies. 
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The QSS speech was recognized at relative speech levels 

slightly higher than transient speech. 

Figure 3 Growth of word recognition based on error function 

parameters: solid: original speech; dotted: HPF speech;  

+-+: QSS component; o-o: transient component. 

Statistical analyses of the parameters are summarized in 

Table II. The column ‘adj midpt’ is the adjusted  midpoint 

values shown in the lower part of Figure 3. The QSS component 

had a significantly lower PBmax than the other components, 

while the transient component had approximately the same 

PBmax as original and HPF components. The adjusted growth 

function midpoint of the HPF component was significantly 

smaller than for original and transient speech, suggesting that 

this component was detected at lower stimulus levels. The 

difference in midpoints between QSS and transient speech was 

not significant, and the slopes of the growth functions showed no 

significant differences. 

TABLE II 

Growth function parameters 

 Midpoint adj midpt PBmax slope 

original 17.9 (2.7) 0.3 (2.7) 98.7 (3.0) 7.1 (3.2) 

HPF 15.0 (3.8) -11.2 (3.8)
* 96.5 (2.1) 7.2 (2.5) 

transient 34.4 (4.6) 0.5 (4.6) 84.9 (14.4) 12.1 (6.3) 

QSS 29.2 (11.3) 2.2 (11.3) 45.1 (19.3)
* 5.6 (8.5) 

* p < 0.05 for pair-wise comparisons with other components. 

4. DISCUSSION

In order to study the role of transient speech components on 

speech intelligibility, we implemented a time-varying bandpass 

filter to extract QSS energy from a speech signal. We refer to the 

residual signal with low frequency and QSS energy removed as 

the transient component of speech, and we suggest that it 

primarily represents transitions between vowels and hubs of 

consonants. The transient components have approximately 2% 

of the energy of the original speech but psychometric measures 

of maximum word intelligibility showed almost equal 

intelligibility. The QSS components had much greater energy 

but were significantly less intelligible. We suggest that the QSS 

component corresponds to speech energy that characterizes 

sustained vowel sounds and some consonant hubs.

These results suggest that transient components are critical to 

speech intelligibility, and, if the auditory system is sensitive to 

transient information, emphasis of the transient components may 

provide a basis to enhance intelligibility. The transients are 

expected to be distributed across time and frequency, requiring 

time-frequency techniques to identify them. The algorithm 

described here provides one method of extracting predominately 

transient speech components, and investigations into its utility in 

enhancing speech intelligibility are currently underway in our 

laboratory. 
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