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ABSTRACT

Unforeseen user intents can account for a significant portion of

unsuccessful calls in an automatic voice response system. Discov-

ering these unforeseen semantic intents usually requires expensive

manual transcriptions. We propose a method to cluster the acous-

tics from logged calls by their estimated semantic intents. This

is achieved through training a mixture of language models in an

unsupervised manner. Each cluster is presented to the application

developer with a suggested language model to cover the seman-

tic intent of the data in that cluster. The application developer

validates the cluster and its suggested language model, and then

updates the application. A quantative evaluation on a corporate

voice-dialer application shows that updating the application in this

manner yields a relative 13.4% reduction in semantic error rate.

1. INTRODUCTION

Automatic voice response systems have gained increasing popular-

ity in human-machine interaction. Rule based finite state or con-

text free grammar (CFGs) are often used as the language model

(LM) for simple, system-initiative dialog applications. Such a re-

stricted strategy often leads to high recognition performance for

in-grammar utterances, but completely fail when a user’s response

is out of grammar. There are two causes that may attribute to an

out-of-grammar utterance: (a) The utterance’s syntactical structure

may not be parsed by the CFG; For example, a user’s response

”twentieth of July” may cause failure to the grammar “[month]
[day].” (b) The user may have an unanticipated semantic intent.

For example, in a corporate voice dialer application, the grammar

for the response to the prompt ”Good morning, who would you

like to contact?” may be designed expecting the user to provide a

name. However, the user may respond “human resources.”

At the application design stage, it is difficult for an applica-

tion developer to anticipate all the ways in which the user may

frame their request (leading to problem (a)), and all the semantic

intents the user might have (leading to problem (b)). Many ef-

forts have been made to solve problem (a) by building more robust

LMs, e.g. by hand-authored combination of CFGs and statistical

LMs [1, 2]. Solving problem (b) ideally requires a large amount of

transcribed and semantically annotated data from real user calls.

As this could be extremely expensive, we investigate approaches

to automate this process. To this end, this paper presents a prob-

abilistic framework to discover unforeseen semantic intents in an

unsupervised manner, and to tune a deployed application accord-

ingly.

In order to cluster acoustics by their semantic intents and to

provide annotations automatically, we use word level hypothe-

ses generated from a large-vocabulary speech recognizer. With

these hypotheses available, our problem resembles unsupervised

text clustering which has been studied extensively. Among the

most popular solutions is the vector space approach [3], where a

feature vector is extracted from each sample (e.g. inverse docu-

ment frequency) and a dissimilarity measure (e.g. cosine distance)

is defined in this vector space. Clustering is thus reduced to finding

a sample assignment scheme that minimizes the total amount of

distortion. While finding the optimal scheme is prohibitive, meth-

ods similar to K-means (but the means are restricted to be one of

the samples assigned to the cluster) or nearest neighbor search are

often practically used to improve efficiency [4, 5, 6].

In this work, we propose a model-based clustering algorithm

which has a more principled objective and a lower complexity. We

do not need to explicitly define a dissimilarity measure; rather,

each cluster is modeled as a probabilistic LM and the clustering is

intended to maximize the data likelihood. Furthermore, the final

LMs of the clusters can be utilized directly for grammar update,

which greatly expedites the grammar tuning process. The rest of

the paper is organized as follows: Section 2 presents our algorithm

of clustering acoustics by their semantics intents; Section 3 dis-

cusses how we present clusters to an application developer. Sec-

tion 4 describes a quantative evaluation method and the evaluation

results on a large-scale voice-dialer application, and Section 5 con-

cludes with some discussion.

2. LANGUAGE MODEL BASED ACOUSTIC
CLUSTERING

We use a generative Markov model where the acoustic feature se-

quence x of an utterance is generated from a word sequence w
according to an acoustic model p(x|w), and the word sequence w
is generated from a semantic intent (or cluster) c based on a per-

cluster n-gram LM p(w|c). The complete likelihood of x, w and c
can be factorized as

p(x, w, c) = p(x|w)p(w|c)p(c), (1)

where x is observed and w and c are hidden.

Our objective is to train semantic clusters to maximize the

likelihood p(x). In practice, recognition is decoupled from cluster

training. In other words, we first perform recognition on the acous-

tics using a task-independent large-vocabulary LM p(w) and an

acoustic model p(x|w) trained on a large set of telephony speech.
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The decoded word sequence hypotheses w and their scores p(w|x)
are then taken as input in training the clusters.

On the other hand, We use per-cluster uni-grams to model

p(w|c), where the sentence end probability is set to be equal among

all clusters for simplicity. We choose to use uni-grams because

telephony applications often anticipate short utterances, and we

believe that in such applications a uni-gram LM of a semantic clus-

ter has a perplexity not much higher than that of a bi-gram (or tri-

gram), but has much lower computational complexity. The cluster

training, therefore, involves estimating the alphabet of c, the prior

on semantic clusters p(c) and the LMs p(w|c).

In this section, we first present the estimation algorithm and

discuss some implementation issues. Then we describe our initial-

ization method corresponding to a bottom-up clustering approach,

and explain how to merge clusters in this bottom-up scheme.

2.1. Estimating the mixture of language models

As is mentioned above, the training process is intended to maxi-

mize the likelihood of an acoustic data set {xi}M
i=1 consisting of

M waveforms. Since w and c are hidden, the optimization can be

achieved by the standard EM algorithm.

In the E-step, we first compute the posteriors of the word se-

quence hypotheses w and the cluster hypotheses c given a wave-

form xi, according to model (1):

p(w, c|xi) = p(w|xi)p(c|w) (2)

Specifically we use the fixed LM p(w) and the pre-trained acous-

tic model p(x|w) to compute p(w|xi), and use the old priors p(c)
and the old per-cluster uni-grams p(w|c) to compute p(c|w). Next,

we collect sufficient statistics for the maximization step. To esti-

mate the cluster prior p(c), we need to compute the expected class

occupancy count Ψc which is given by

Ψc =

MX

i=1

X

w

p(w, c|xi) (3)

Similarly, to estimate the mixture of LMs, we need to compute the

expected count Φc,u of a uni-gram u appearing with the class c,

Φc,u =
MX

i=1

X

w

p(w, c|xi)#u(w) (4)

where #u(w) is the number of times uni-gram u occurs in the

word sequence w. The M-step thus simply consists of normalizing

Ψc to give the updated cluster prior p(c), and normalizing Φc,u to

give the updated class-conditional uni-gram probabilities.

2.2. Implementation Issues

For computational feasibility, the word sequence hypotheses w in

Equations (3) and (4) are restricted to a lattice, or a N-best list,

with p(w|xi) renormalized accordingly. In the most aggressive

case, where an N-best list of length 1 is used, we get one-best

word sequences. Our intent in doing recognition is not to find

the true word sequence. Rather, the intent is that the utterances

with the same semantic intent yield the same decoding results. For

example, if all utterances of “tech support” are decoded as “check

support”, they still can be clustered together. As will be shown

in Section 4, the clustering on true transcriptions has only a slight

improvement over that on one-best decoding results. From now

on, We let w∗
i denote the one-best word sequence of waveform xi.

Finally, we could also use Viterbi training instead of EM in the

optimization process. In other words, p(c|w) is renormalized to 0

or 1, depending on whether c is the best hypothesis given w. Our

experiments show that Viterbi training has very similar clustering

results as EM training does, while the computation is significantly

reduced in the Viterbi case.

2.3. Model initialization

A critical issue in unsupervised clustering is how to initialize the

clusters without the knowledge of the alphabet. One natural solu-

tion is to start with each utterance being a cluster on its own and

apply an agglomerative approach with a certain merging criterion

[4]. However, since telephony applications usually see short utter-

ances with a domain-specific vocabulary, we can first assume that

each vocabulary item represents a different semantic intent and

initialize the clusters into a better shape:

1. The number of clusters is set to the number of vocabulary

items that have a count no less than a floor count (one in

our case) in the one best decoding results; each cluster cor-

responds to a vocabulary item.

2. The prior p(c) of the cluster corresponding to the vocabu-

lary item u is set to the normalized number of utterances

containing u.

3. Per-cluster n-gram LMs p(w|c) of the cluster correspond-

ing to the vocabulary item u are trained using all word se-

quences w∗
i containing u.

Once the clusters are initialized, we apply a number of EM or

Viterbi iterations until the models converge. In each iteration,

the clusters with a zero prior are removed. The resulting num-

ber of clusters is a crude approximation of the number of semantic

intents. Some clusters may contain the same semantics and we

therefore apply merging to remove potentially redundant clusters.

2.4. Merging similar clusters

Techniques on merging and splitting have been studied in the field

of text clustering [7, 6]. Many of them are based on certain dis-

tance measure between two clusters. In our work, we use a low-

complexity distance measure based on the K-L divergence [8] be-

tween the uni-gram distributions of two clusters. Assuming γc,u is

the uni-gram probability of vocabulary item u in cluster c (γc,u is

proportional to Φc,u), the distance is defined as an average of the

asymmetrical K-L divergences,

D(c1, c2)
∆
=

X

u

(γc1,u log
γc2,u

γc1,u
+ γc2,u log

γc1,u

γc2,u
), (5)

where u is summed over all vocabulary items appearing in cluster

c1 and c2, and any zero probability γc1,u or γc2,u are smoothed by

a floor value. We merge c1 and c2 if D(c1, c2) is smaller than a

threshold. Upon merging, p(w, c1,2|x) = p(w, c1|x)+p(w, c2|x)
and the new model is re-estimated using these new posteriors. A

few iterations of EM or Viterbi estimation are applied after all such

pairs are merged. Alternatively, we can apply re-estimation after

each pair is merged, but this would greatly increase computation

and hence was not used in our evaluation.
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3. CLUSTER PRESENTATION

The clustering algorithm in Section 2 may result in a significant

number of clusters; an important task is to select those of our in-

terest and present them to an application developer. This involves

ranking the clusters in order of importance, filtering out ”garbage”

clusters and representing a cluster in a simple and self-descriptive

way. Finally, the application developer needs to select the clusters

with uncovered semantic intents and update the application gram-

mar accordingly.

(a) Ranking The clusters are ranked by their priors. Since

a cluster prior indicates how frequent a semantic intent occurs in

the data set, the high-ranking clusters are more important to the

system, and are hence inspected with a higher priority.

(b) Filtering A cluster with a high prior, however, may not be

a relevant one. In real-world applications, there are a good number

of calls consisting of silence, noise or extraneous speech. These

”garbage” utterances tend to be recognized as some function word

sequences (”a”, ”oh”, ”the”, for example), and they are likely to

be clustered together with a high cluster prior. However, different

from the utterances in a cluster with meaningful semantics, these

garbage word sequences are seldom consistent with each other.

We thus use a ”consistency” measure to filter out such garbage

clusters.

First, we define a similarity measure between two utterances

to be the number of word tokens they have in common normalized

by the total number of word tokens in both of their one-best de-

coding results. (The similarity measure can be easily extended to

the case of N-bests if necessary.) The consistency is then defined

as the normalized pairwise similarity of all utterances in a clus-

ter. The clusters with a consistency lower than a threshold will be

considered ”garbage” and be discarded.

(c) Representing We select a “central” utterance to repre-

sent a cluster. This utterance is chosen to have the highest sum

of similarities with all other utterances in the same cluster, and is

intuitively the most representative one.

The above techniques can effectively help an application de-

veloper reduce the number of clusters to study, but he/she still

needs to decide, by inspecting the central utterance, whether a

cluster has an unforeseen semantic intent or it has one already in

the application grammar. Once a cluster is decided to have new se-

mantics, the application developer can make corrections to some

one best word sequences of that cluster, if necessary. A new gram-

mar rule can be learned based on these corrected word sequences

or simply based on the final LM of that cluster.

4. EVALUATION

A natural evaluation strategy is to see how these clusters help

improve speech understanding. Specifically, we update the ap-

plication grammar according to our discoveries, repeat the corre-

sponding dialog state, compute the semantic error rate (SER) and

compare it with the SER obtained using the original application

grammar. This section describes in detail our evaluation database,

method and results.

4.1. Application database

We used MSConnect, a large-scale voice-dialer application devel-

oped and used daily in Microsoft Corporation, for our evaluation.

When connected to the system, a user is prompted ”Good morning,

who would you like to contact”. The baseline application grammar

(G0) for this dialog state has only one rule: “[first name] [last
name]” (R0), consisting of 57875 entries. The user is supposed to

speak exactly the full name of the person he/she wants to call. Af-

ter confirmation, the system will transfer the user to the destination

or provide other information. Interestingly, this dialog state has en-

countered the most diversified answers because the user does not

know the underlying grammar and may speak things other than a

person’s name. The acoustics for this dialog state, therefore, is a

good data set to evaluate our technique.

We extracted 5464 waveforms from the call logs correspond-

ing to this dialog state. They were split into four subsets to perform

four-fold cross-validation. To obtain the ground truth semantic in-

tents, these waveforms were transcribed manually and annotated

with semantic IDs; noise, silence and extraneous speech were an-

notated as “garbage”.

4.2. Evaluation method

First we used a recognizer built upon Microsoft English Telephony

Server (i.e. the acoustic model p(x|w)) and a 20K uni-gram back-

ground LM (i.e. the LM p(w)) to obtain one-best word sequences.

Since our application grammar G0 was not necessarily covered

by this background LM, most name utterances were recognized as

acoustically similar word sequences. Our clustering algorithm de-

scribed in Section 2 was applied to these sequences using Viterbi

training, resulting in a large number clusters. We ranked these

clusters by their priors, filtered out ‘garbage clusters, and selected

those only with unforeseen semantic intents, ending with L clus-

ters. For each cluster ci, i = 1..L, we manually designed a rule Ri

to cover all semantic intents of the data in this cluster. Note that a

rule Ri may contain multiple semantic IDs. For example, if a clus-

ter contains “building one reception”, “building two reception” and

so on, we can design a general rule ”building [number] recep-
tionist ” which contain multiple semantic IDs. The weight of Ri is

set to be the cluster prior p(ci), whereas that of R0 is approximated

by 1−
LX

i=1

p(ci). The semantic IDs in Ri were assigned as the cor-

responding ones in the ground truth. These rules were added to the

baseline grammar G0 one by one to form a set of new grammars

{Gi}L
i=1 used in evaluation, where Gj = (R0, R1, ..., Rj).

The next step was to run recognition on the test sets using G0

and {Gi}L
i=1 sequentially. If the recognizer determines, by using a

confidence threshold, that an utterance contains speech, it outputs

its corresponding semantic ID in the grammar; otherwise, it out-

puts “garbage” as its semantic ID. Given the reference semantic

IDs and the recognized ones, we were able to compute the SERs,

reflecting the impact of our clustering discoveries on speech un-

derstanding.

4.3. Evaluation results

As described in 4.2, we applied Viterbi training to our database,

followed by ranking, filtering out garbage and selecting clusters

with uncovered semantic intents. This process quickly discovered

L = 9 clusters from our test sets. In fact, the four test sets each

discovered all these 9 clusters, but with different priors. The cen-

tral utterances of these clusters in one of the test sets are ”build-
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Fig. 1. SERs obtained using baseline grammar (G0), using up-

dated grammars by clustering on one-best hypotheses (G1-G9,

where G9 is the fully updated grammar), and using the fully up-

dated grammar by clustering on the transcriptions (G′)

ing thirty reception”, ”operator”, ”security”, ”help desk”, ”com-

pany store”, ”support”, ”customer service”, ”benefits” and ”shut-

tle”. EM training gave very similar clustering results.

We followed the evaluation method described in 4.2 to obtain

SERs using the updated grammars G1-G9. As is shown in Fig-

ure 1, the SER decreased as more rules were added to the grammar.

The decrease slowed down because the semantic clusters added

later (with smaller weights) were less likely to appear in the data

set. When all new semantics were added (G9), the SER was re-

duced from 39.49% to 34.22%, i.e. a relatively 13.4% reduction.

To show that one-best decoding is sufficient for clustering in

this application, we also obtained a grammar G′ by clustering on

the ground truth transcriptions of the train sets, and re-ran the

recognition using G′. As is shown in the figure, using G′ in recog-

nition gave a SER of 33.0%. This improvement is only trivial con-

sidering the cost of manually transcribing thousands of waveforms.

It is also important that adding these new semantic items does

not bring a significant amount of confusion between the names

and the newly added semantic items. Table 1 summarizes how the

semantic errors changed in each category when the grammar was

updated from G0 (baseline) to G9 (the one including all discov-

eries). The categories are full names, uncovered semantics and

garbage. Obviously the new grammar did not substantially affect

the name recognition, while having over half of the utterances with

unforeseen semantics correctly recognized. It is worth noting that

some originally mis-recognized names were recognized correctly

using the updated grammar. This is because the pruning parame-

ters in the Microsoft speech recognizer are automatically adjusted

to the LM.

Additionally, we hand-crafted a grammar G∗ based on the

transcriptions for comparison. This grammar has rules covering

all semantic intents of the data, but each rule has a weight equal to

that of the name rule R0 for simplicity. The SER obtained using

G∗ is 37.0%, lower than that of G0 but higher than that of G9.

Though a grammar designed in this fashion is by no means an op-

timized one, it more or less indicates what is achievable by tuning

an application grammar in a completely manual manner.

Names Uncovered Garbage. All

incor→cor 31 318 1 350

cor→incor 55 0 7 62

cor→cor 3218 0 26 3244

incor→incor 1194 225 389 1808

Total 4498 543 423 5464

Table 1. Number of instances changed when G0 → G9; “cor”

and “incor” stand for correct and incorrect semantic recognition

respectively

5. CONCLUSION AND DISCUSSION

This paper presented a LM based clustering algorithm to discover

unforeseen semantics from call log acoustics. Compared to con-

ventional clustering methods, our approach does not require to ex-

plicitly define a feature vector or a dissimilarity measure. Rather,

it models the dissimilarity implicitly within a probabilistic frame-

work, and trains the clusters in the maximum likelihood sense with

a fairly low complexity.

This approach brings a great improvement for a voice-dialer

system (probably as good as that brought by a completely manual

tuning), while eliminating the needs of manually transcribing a

large number of waveforms. Though this work used an in-house

application for evaluation, the framework is general enough to be

applied to other applications. For more complicated applications

with longer utterances, bi-gram LMs can be considered as per-

cluster LMs.

The authors would like to thank Ye-Yi Wang, Dong Yu, Pe-

ter Mau and Milind Mahajan at Microsoft Research for providing
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