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ABSTRACT

In this paper, we present a novel adaptation method for in-

tent classification using Boosting in a spoken language un-

derstanding system. The goal is adapting an existing model

to a new target application, which is similar but may have

different intents or intent distributions. Adaptation can also

be employed for a single application where the intent distri-

bution varies by time. We assume the target application has

a small amount of labeled data. We also propose employ-

ing active learning to selectively sample the data to label

for adaptation. Our results indicate that we can achieve the

same intent classification accuracy using less than half of

the labeled data when there is not much training data avail-

able. Furthermore, combined with active learning we see

18.6% relative reduction in classification error rate.

1. INTRODUCTION

Spoken dialog systems aim to identify intents of humans,

expressed in natural language, and take actions accordingly,

to satisfy their request. The intent of the speaker is iden-

tified using a natural language understanding component.

This step can be seen as a classification problem [1, 2]. In

this study, we have used a Boosting-style classification al-

gorithm [3]. As an example, consider the utterance I would
like to know my account balance, in a customer care appli-

cation from a financial domain. Assuming that the utterance

is recognized correctly, the corresponding intent would be

Request(Balance) and the action would be telling the bal-

ance to the user after prompting for the account number or

routing this call to the billing department.

Data-driven classifiers are trained using large amounts

of task data which is usually transcribed and then labeled by

humans, an expensive and laborious process. By “labeling”,

we mean assigning one or more of the predefined intents to

each utterance.

In this paper, we present a supervised adaptation method

for natural language intent classification. When many spo-

ken dialog systems using similar intent classification mod-

els are needed to be built in a shorter time frame, the new

target application can be bootstrapped only by labeling a

small amount of data using adaptation techniques. The tar-

get application may include intents which are already mostly

covered by an existing application, but maybe with different

prior distributions. For instance, consider a new applica-

tion from the same domain for customer care applications.

Adaptation can be employed for statistical models where

the target application does not match the training data. This

may include continuous adaptation of an existing model to

time varying statistics or exploiting out of domain data for

training the target model.

Although statistical model adaptation has been a well

studied area in speech recognition for acoustic and language

modeling [4, 5, 6], there is comparably less work done on

natural language processing. One recent study is on the

adaptation of natural language understanding using a com-

mon adaptation method of maximum a posteriori (MAP)

adaptation [7], which adapts the hidden vector state model

built for ATIS application to DARPA Communicator. An-

other study is about supervised and unsupervised adaptation

of probabilistic context free grammars to a new domain us-

ing again MAP adaptation [8].

In the following section, we briefly explain boosting al-

gorithms. Then, in Section 3, we propose a new adaptation

method. We conclude after presenting the experiments and

results.

2. BOOSTING

Boosting is an iterative procedure; on each iteration,
�
, a

weak classifier, � � is trained on a weighted training set, and

at the end, the weak classifiers are combined into a single,

combined classifier. The algorithm generalized for multi-

class and multi-label classification is given in Figure 1. Let�
denote the domain of possible training examples and let�
be a finite set of classes of size � � � 	 � . For � � �

, let� � � � for � � �
be

� � � � 	 � � �
if � � �� �
otherwise.

The algorithm begins by initializing a uniform distribution " $ & ( � * over training examples
&

and labels � . After each

round this distribution is updated so that the example-class

combinations which are easier to classify get lower weights
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� Given training data from the instance space� � � � 	 � 
 � � � 
 � � � 
 � 	 � 
 � � � �
where

	 �  "
and

� � $ &
.� Initialize the distribution ' � � ( 
 ) � � + , . 0

.� For each iteration 1 � + 
 � � � 
 5
do

– Train a base learner 6 8 using distribution ' 8 .

– Update ' 8 ; � � ( 
 ) � � ' 8 � ( 
 ) � > @ B C E F G H I K C L M F N H OP 8
where

P 8 is a normalization factor and Q 8 is the

weight of the base learner.� Output the final classifier defined as:R � 	 
 ) � � UV 8 W � Q 8 6 8 � 	 
 ) � �
Fig. 1. The algorithm Adaboost.MH.

and vice versa. The intended effect is to force the weak

learning algorithm to concentrate on the examples and la-

bels that will be the most beneficial to the overall goal of

finding a highly accurate classification rule.

This algorithm can be seen as a procedure for finding

a linear combination of base classifiers which attempts to

minimize an exponential loss function [9], which in this

case is: V X V Z \ ^ _ F ` Z a b d f F g Z h i

An alternative would be to minimize a logistic loss function

as suggested by [10], namelyV X V Z j l m n p \ ^ _ F ` Z a b d f F g Z h
q

i

In that case, the confidence of a class, r , for an example, s X
is computed as:t m v X w r x y p n { s X q y nn p \ ^ b d f F g Z h
A more detailed explanation and analysis of this algorithm

can be found in [3]. In our experiments, we used the Boos-

Texter tool, which is an implementation of the Boosting al-

gorithm [1]. For text categorization, BoosTexter uses word} -grams as features, and each weak classifier (or “decision

stump”) checks the absence or presence of a feature.

3. APPROACH

In this work, the aim is to exploit the existing labeled data

and models for boosting the performance of the new similar

applications using a supervised adaptation method. The ba-

sic assumption is that there is an intent model trained with

data similar to the target application. Then the idea is adapt-

ing this classification model using the small amount of al-

ready labeled data from the target application, thus reduc-

ing the amount of human-labeling effort necessary to come

up with decent statistical intent classification systems. The

very same adaptation technique can be employed for im-

proving the existing model for non-stationary new data.

There are at least two other ways of exploiting the ex-

isting labeled data from a similar application. We will eval-

uate and compare these methods to adaptation in the next

section.~
Simple Data Concatenation ( � � � � r \

): where the

new classification model is trained using the data from

the previous application concatenated to the data la-

beled for the target application.~
Tagged Data Concatenation ( � � � � \ �

): where the

new classification model is trained using both data

sets, but each set is tagged with the source applica-

tion. That is, in addition to the utterances, we use the

source of that utterance as an additional feature dur-

ing classification.

3.1. Classification Model Adaptation

For adaptation, we begin with an existing classification model.

Then using the labeled data from the target application we

build a new model based on this existing one. This method

is similar to incorporating prior knowledge or exploiting un-

labeled utterances for Boosting [11, 12]. In those works, a

model which fits both the training data and the task knowl-

edge or machine labeled data is trained. In our case, the aim

is to train a model that fits both a small amount of appli-

cation specific labeled data and the existing model from a

similar application. More formally the Boosting algorithm

tries to fit both the newly labeled data and the prior model

using the following loss function:V � V H � � � � + � > @ E F G H I � L M F N H O � � � � � � � � � � � ) � � + � 	 � � � � � R � 	 � 
 ) � � � �
where� � m � � � q y � j l ¢ � � £ p m n ¤ � q j l ¢ n ¤ �n ¤ � £

is the Kullback-Leibler divergence (or binary relative en-

tropy) between two probability distributions
�

and
�
. In

our case, they correspond to the distribution from the prior

model
t m v X w r x y n { s X q and to the distribution from the con-

structed model ¥ m ¦ m s X § r q q , where ¥ m s q is the logistic func-

tion
n ¨ m n p \ ^ f

q . This term is basically the distance from

the existing model to the new model built with newly la-

beled data. In the marginal case, if these two distributions

are always the same, then the KL term will be zero and

the loss function will be exactly the same as the first term,

which is nothing but the logistic loss. Here, © is used to con-

trol the relative importance of these two terms. This weight

may be determined empirically on a held-out set.

Note that most classifiers support a way of combining

models or augmenting the existing model, so although this

implementation is classifier (i.e. Boosting) dependent, the
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idea is more general. For example, in a Naive Bayes classi-

fier, this can be implemented as linear model interpolation

or a Bayesian adaptation (like MAP) can be employed.

3.2. Combining Adaptation with Active Learning

As an extension of this adaptation method, we propose to

combine it with active learning [13]. Active learning aims

to minimize the number of labeled utterances by automati-

cally selecting the utterances that are likely to be most infor-

mative for labeling. The idea is using the existing model to

selectively sample the utterances to label for the target ap-

plication, and do the adaptation using those utterances. This

technique is supposed to eliminate the labeling of the exam-

ples or classes which are already covered by the existing

model. It is especially important to determine the initial set

of examples to label when the labeling resources are scarce.

Since there is a previous model to be used to get confi-

dences for the examples from the target application, we em-

ploy certainty-based active learning [14]. In this algorithm,

the existing model labels the unlabeled examples and deter-

mines the “certainty” or “confidence”,
� � �

�
� � � 
 � 
 � �

�
� , of

each of its predictions. The examples with the lowest cer-

tainty levels are then presented to the labelers for labeling.

4. EXPERIMENTS AND RESULTS

We have evaluated the proposed adaptation method using

the utterances from the database of the VoiceTone R
� 1 sys-

tem. We have selected two applications, � �
, and � � , both

from the telecommunications domain, where users have re-

quests about their phone bills, calling plans, etc. The first

one is a concierge-like application which has all the intents

the second application covers. The second one is used only

for a specific subset of intents. The data properties are shown

in Table 1. As seen the perplexity (computed using the prior

distributions of the intents) of the second application is sig-

nificantly lower while the utterances are longer. We have

about 9 times more data for the first application. All the

data is transcribed. We have performed our tests using the

Boostexter tool [1]. For all experiments, we have used word

trigrams as features. In order not to deal with finding the

optimal iteration numbers, we have iterated many times, got

the error rate after each iteration and used the best error rate

in all the results below.

In this experiment, the goal is adapting the classifica-

tion model for � �
using � � so that the resulting model for� � would perform better. Table 2 presents the baseline re-

sults using training and test data combinations. The rows

indicate the training sets and columns indicate the test sets.

The values are the classification error rates, which are the

ratios of the utterances for which the classifier’s top scor-

ing class is not one of the correct intents. The third row is

1VoiceTone R
�

system is provided by AT&T for customer care centers.

� � � �
Training Data Size 53022 5866

Test Data Size 5529 614

Number of Intents 121 98

Call-Type Perplexity 39.4 14.7

Average Utterance Length 8.1 10.6

Table 1. Data characteristics used in the experiments.

Test Set

Training Set � � � �� �
14.4% 26.9%� � 36.4% 13.4%� � � � � �
14.2% 16.8%� �   � "
14.1% 13.4%� " � � � � # 
 %

&

 � 19.0% 12.5%� " � � � � # 
 %

& (
� 16.1% 14.0%� " � � � � # 
 %

& )
� 15.3% 16.0%

Table 2. Adaptation results for the experiments. “ � � � � � �
”

indicates simple concatenation, “
� �   � "

” indicates using an

extra feature denoting the source of training data, “
� " � � �

”

indicates adaptation with different # values.

simply the concatenation of both training sets (indicated by� � � � � �
). The fourth row (indicated by

� �   � "
) is obtained

by training the classifier with an extra feature indicating the

source of that utterance, either � �
or � � . The performance

of the adaptation is shown in the last 3 rows (indicated by� " � � �
). As seen, although the two applications are very

similar, when the training set does not match the test set,

the performance drops drastically. Adding � �
training data

to � � does not help, actually it hurts significantly. This neg-

ative effect disappears when we denote the source of the

training data, but no improvement has been observed on the

performance of the classification model for � � . Adaptation

experiments using different # values indicate interesting re-

sults. We have seen that using a value of 0.1, it is actually

possible to outperform the model performance trained using

only � � training data.

Since we expect the proposed adaptation method to work

better with less application specific training data, we have

drawn the learning curves as presented in Figure 2 using 0.1

as the # value. The top most curve is obtained using random

selection of only � � training data. When we employ adap-

tation with only 1,106 utterances from � � , we have seen

2.5% absolute improvement, which means 56% reduction

(from about 2,500 utterances to 1,106 utterances for an er-

ror rate of 16.8%) in the amount of data needed to achieve

that performance. Then we combine supervised adaptation

with active learning where we selectively sample the train-

ing data using the previously trained model, and get a fur-

ther boost of another 1% absolute, making the reduction in
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Fig. 2. Results using intent classification model adaptation.

Top most learning curve is obtained using just � � data as a

baseline. Below that lie the learning curves using the adap-

tation with random and selective sampling.

the amount of data needed 64% (from about 3,000 utter-

ances to 1,106 utterances for an error rate of 15.6%.) Both

adaptation curves meet at the end, since the pool where we

select the utterances from � � is fixed already. One interest-

ing point is that, after about 3,250 utterances, the adapta-

tion with random sampling curve outperforms the adapta-

tion with selective sampling curve. In a real-life scenario

we can expect the adaptation with active learning curve to

outperform random adaptation curve where the pool of can-

didate data is not fixed apriori.

5. CONCLUSIONS AND DISCUSSION

We have presented a supervised adaptation method for nat-

ural language intent classification using Boosting. We have

shown that, for this task, using the proposed adaptation meth-

ods, it is possible to boost the performance of a spoken lan-

guage understanding system when there is not much train-

ing data available. We have also proposed combining super-

vised adaptation with active learning. Our results indicate

that we have achieved the same intent classification accu-

racy using around 60% less labeled data.

Although this implementation is classifier (namely, Boost-

ing) dependent, the idea is more general. It is also possible

to apply the idea for other classification tasks which may

need adaptation such as topic classification or named en-

tity extraction. The very same adaptation technique can be

employed in cases where there is a mismatch between the

training and the target application.

Our future work includes unsupervised adaptation of in-

tent classification models. This will enable us to bootstrap

new spoken dialog systems without labeling any application

specific data.
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