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ABSTRACT

This paper presents a semantic interpretation strategy, for Spoken
Dialogue Systems, including an error correction process. Semantic
interpretations output by the Spoken Understanding module may
be incorrect, but some semantic components may be correct. A set
of situations will be introduced, describing semantic confidence
based on the agreement of semantic interpretations proposed by
different classification methods. The interpretation strategy con-
siders, with the highest priority, the validation of the interpretation
arising from the most likely sequence of words. If the probability,
given by our confidence score model, that this interpretation is not
correct is high, then possible corrections of it are considered using
the other sequences in the N-best lists of possible interpretations.
This strategy is evaluated on a dialogue corpus provided by France
Telecom R&D and collected for a tourism telephone service. Sig-
nificant reduction in understanding error rate are obtained as well
as powerful new confidence measures.

1. INTRODUCTION

In a previous paper [1], a method has been proposed for obtain-
ing interpretations of spoken sentences using stochastic finite state
transducers (SFST). With these transducers an ordered set of N-
best lists is obtained with concept-dependent language models (LM).
Each list contains sequences of words which generate the same
semantic interpretation but may have different acoustic and lin-
guistic confidence. Semantic interpretations may be incorrect, but
some semantic components may be correct. It is then useful for the
dialogue manager to have the probability that each interpretation
component is corrected. This probability should be reliably esti-
mated from situations describing the confidence with which results
have been obtained. A set of situations will be introduced, describ-
ing semantic confidence based on the agreement of semantic inter-
pretations proposed by different classification methods: decision-
tree based classifiers (Semantic Classification Trees, SCT [2]) and
large-margin classifiers using boosting (BoosTexter [3]) and Sup-
port Vector Machines (SVM-Torch, [4]).

In [5] a method has been proposed for computing the prob-
ability that an interpretation Γ obtained from each sentence in a
n-best list of conceptual interpretations is correct given the rank of
the sentence and a set of acoustic, linguistic and semantic confi-
dence features. The computation of this probability is often highly
imprecise. A better strategy for selecting an interpretation is in-
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troduced in this paper by taking into account the results of redun-
dant interpretation processes using different classifiers, using con-
fidence measures taken mostly just on the words that support the
generation of semantic constituent hypotheses. The interpretation
strategy considers, with the highest priority, the validation of the
interpretation arising from the most likely sequence of words. If
the probability that this interpretation is not high, then possible
corrections of it are considered using the interpretations emerging
from the other sequences in the N-best lists.

2. KNOWLEDGE REPRESENTATION AND USE

The type of applications considered in this paper are telephone
services in which a user performs requests to a system. Follow-
ing definitions and notations in [6], an example of user request is
represented by an instance of a speech act of the type:

REQUEST(user,service,
INFORMREF(user,service,x,

(SATISFIES(Restaurant(x)),Path(PTH))))

where REQUEST indicates an illocutionary speech act, user
and service are the conversant entities, INFORMREF is a propo-
sitional content expressing the constraints of the request. In this
example, the constraints apply to the request for instances x of the
semantic structure Restaurant in an area described by an instance
PTH of the semantic structure Path. Other types of speech acts
are INFORM, QUESTION.

In order for the service dialogue strategy to provide a suitable
action, the speech understanding subsystem (SUS) has to hypoth-
esize the type of dialogue act, and the propositional content. For
this particular type of application, the conversant entities are con-
stant and it may not be necessary to identify the user, although
having some information about him/her might be useful.

The propositional content is obtained by the interpretation strat-
egy of the SUS which generates the instance PTH and the fact that
there is a request about a restaurant whose answer should satisfy
PTH. Generation of semantic interpretation is a process of eviden-
tial reasoning in which composition and inference are based on
semantic knowledge expressed by an appropriate formalism and
on probabilities for computing the likelihood of a result given the
imprecision of hypotheses and knowledge.

Most of the approaches proposed so far for Spoken Language
Understanding (SLU) integrate semantic knowledge into a context-
free semantic grammar and propose different algorithms for com-
puting the probability P (Γ, W ) of a conceptual structure Γ and a
sequence of words W [7, 8, 9]. Context-free semantic grammars
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have nonterminal symbols which represent semantic structures and
can be rewritten into non-overlapping sequences of words.

Interesting books [10, 11] describe various types of seman-
tic knowledge and their use. A common aspect of many of them
is that it is possible to represent complex relational structures with
non-probabilistic schemes that are more effective than context-free
grammars. For example, in K-LONE [12] concept descriptions
account for the internal structure with Role/Filler Descriptions,
called Roles and for a global Structural Description (SD). Roles
have substructures with constraints specifying types and quantities
of fillers. SDs are logical expressions indicating how role fillers
interact. Role descriptions contain value restrictions. Epistemo-
logical relations are defined for composing conceptual structures.
They may connect formal objects of the same type and account for
inheritance. It is important to point out that semantic knowledge
is, in general, context-sensitive.

Instances containing token values are the basis for the infer-
ence performed by the dialogue strategy. The inference process
uses ontologies and relations among semantic components and is
based on algorithms for theorem proving or spreading activation
on semantic networks. It is worth noticing that for representation
formalisms like KL-ONE, inheritance can take place for concepts,
roles as well as structural descriptions. Automatic reasoning is per-
formed with these schemes using methods such as theorem prov-
ing, rule chaining or spreading activation. Evidential reasoning
with these methods appear to be complex and often not feasible in
a rigorous way.

3. SPEECH UNDERSTANDING STRATEGY

Following the semantic models presented in the previous section,
the first step in the semantic interpretation process is to detect and
extract the concepts (or speech acts) needed in order to fill the
semantic structure considered. These concepts represent speech
acts like:
request for help, ask for repeat, ask for information,
access to a list item, confirmation, negation,. . .
and entities that are associated with specific values:
restaurant location, specialties, price, time,. . . .

In order to detect such concepts from the ASR output, we use
two kinds of models:

• text classifiers that are trained to label a string of words with
one or several concept tags;

• regular grammars coded as Finite State Machines (FSMs),
only on the concepts representing the entities with values.
There is one FSM for each kind of entity (price, special-
ties,. . . ) that models all the different values accepted by the
entity.

The general Speech Understanding strategy, presented in fig-
ure 1, can be described as follows:

1. the ASR module outputs a word graph;

2. a Structured N-best list of hypotheses [1] is extracted from
the word graph, containing the n-best conceptual interpreta-
tions contained in the word graph as well as the n-best word
hypothesis for each interpretation

3. the best hypothesis of the first interpretation is selected as
the reference hypothesis W1,1;

4. each classifier processes W1,1 in order to output a string of
concept tags;

5. a decision rule checks the agreement between the classifiers
on the concept strings outputs;

6. if all classifiers agree, W1,1 with its concept string is trans-
ferred to the dialogue manager in order to build the seman-
tic representation of the utterance;

7. if no total agreement is reached, an error correction mod-
ule looks for the most reliable correction of W1,1 within the
Structured N-best list. A score is given to the chosen correc-
tion, the utterance can be rejected according to a threshold
on this score.

Structured
N−Best list hypothesis

1−best

ASR

vote

OK

Error Correction

Reject corrected(1−best)

BoosTexter
SVM Torch
SCT

Signal

High

Low

Fig. 1. Architecture of the error correction strategy

Before presenting the probabilistic model behind our error cor-
rection module, we describe first in the next section the classifica-
tion tools used in the decision process.

4. SPEECH UNDERSTANDING WITH TEXT
CLASSIFIERS

Several studies have shown that text classification tools (like Sup-
port Vector Machines or Boosting algorithms) can be an efficient
way of labeling an utterance transcription with a semantic label
such as a call-type [13] in a Spoken Dialogue context. This ap-
proach has two main advantages: firstly, the amount of human su-
pervision is limited as no keywords or grammars have to be defined
in order to characterize a concept. The only manual data needed is
a training corpus containing, for each utterance, the string of con-
cepts occurring in it. Secondly, classifiers are more robust to the
noise generated by ASR errors and spontaneous speech effects. In-
deed, they can be trained directly from ASR output and therefore
model this noise.

In the proposed strategy we use three kinds of classifiers: a
decision-tree based classifier (Semantic Classification Trees or SCT
[2]) and two large-margin classifiers, one based on Support Vec-
tor Machine (SVM-Torch, [4]) and one implementing a boosting
method of weak classifiers (BoosTexter [3]). Because these tools
are based on different classification algorithms with different input
formats (bag-of-words or word-strings for example), they don’t al-
ways use the same information in order to characterize a label.
Therefore, using them simultaneously and defining a voting deci-
sion rule, can increase the classification robustness.
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5. ERROR CORRECTION PROBABILITIES

We present here the probabilistic model behind the error correction
strategy presented in section 1.

Let Γ1 be the most likely interpretation from the Structured
N-best list and W1,1 be the most likely sequence of words corre-
spondig to Γ1. Better semantic hypotheses have to be searched
for in the other word sequence candidates only when there is a
high probability that this search results in a better interpretation. It
is thus important to find conditions for evaluating the probability
that Γ1 is correct. Furthermore, even when Γ1 is incorrect, it is
likely that it is partially correct and a better interpretation has to be
found as a correction of the errors in Γ1.

Let us consider only modifications Γc = mc(Γ1). Γc is an
alternative in the Structured N-best list to Γ1. The differences be-
tween these two interpretations (called modifications mc) are in-
sertions, substitutions or deletions of concepts between Γ1 and Γc.
Let Wc,1 be the best sequence of words expressing Γc.

In principle, semantic interpretations Γ should be scored with
the following probability, with Y being the speech signal and Wg

the word graph:

P (Γ | Y ) = P (Γ | Wg)P (Wg | Y ) (1)

The following approximation is proposed to find the best in-
terpretation:

P (Γc | Wg) ≈ P{mc | Γ1, W1,1, S1, F (W1,1, Wc,1)}

P (Γ1 | Wg) ≈ P{ε | S1, F (W1,1)} (2)

S1 is a confidence predicate about Γ1. It is defined by agree-
ment rules between the classifiers as presented in figure 1. Two
levels of confidence are defined: high confidence (High) if all clas-
sifiers agree and low confidence (Low) if they don’t. Wg is rep-
resented by W1,1 and a set of measures or confidence predicates
F taken on W1,1 and Wc,1. The confidence measures F include
acoustic and linguistic features as described in [5]. ε means that
no correction is done on Γ1.

Error correction Iq can be seen as special type of inference in
which a new interpretation Tq(Γq) is obtained from the interpreta-
tion Γq when some premise PRq is true. The general form for the
q-th type of error correction is:

Iq : Γq ∧ PRq → Tq(Γq)

where PRq are expressions conditioning the application of a
correction.

If corrections apply only to Γ1, then: Γq = Γ1 and Iq =
mc(Γ1). On the other hand, Iq = ε(Γ1) means that Γ1 is accepted.

Decision on applying corrections depends on the following
probability:

P (Tq | PRq) =
P (PRq | Tq)P (Tq)

P (PRq | Tq)P (Tq) + P (PRq | ¬Tq)P (¬Tq)
(3)

where ¬ means negation.
All these probabilities are learned on a development corpus in

the following way: firstly, a Structured N-best list is estimated on
each utterance of the corpus. Secondly, each hypothesis of these
lists is labeled with a tag indicating that the interpretation attached
to the hypothesis is correct or not and with a set of confidence mea-
sures, as presented in [5]. Finally a decision-tree training is per-
formed on these labeled hypotheses in order to separate the correct
interpretations from the wrong ones.

Decision is based on the value of P{(Tq = ε(Γ1)|PRq}.
Each path in the decision tree corresponds to a premise PRq.
Each leaf has also associated counts from which the probability
P{(Tq = ε(Γ1)|PRq} can be estimated. If the probability is
greater than a threshold, then Γ1 is considered to be correct. If
the probability that Γ1 is correct is too low, then we look for the
Tq which maximizes the probability P (Tq | PRq). According to
the probability obtained we can decide to either accept the correc-
tion or reject the utterance.

6. EXPERIMENTAL RESULTS

Experiments were carried out on a dialogue corpus provided by
France Telecom R&D and collected for a tourism telephone ser-
vice. The task has a vocabulary of 2200 words. The language
model used is made of 44K words. The interpretation strategy was
inferred using a development corpus containing 2.1k utterances.
Performance was evaluated on a test corpus containing 1.7k utter-
ances. The Word Error Rate (WER) on the development and test
corpora, considering the best word sequence obtained only with
the generic LM, were 25.83% and 26.98% respectively. The mea-
sure considered here is the Understanding Error Rate (UER) that is
related to the tags and the values of the concepts detected. 15 con-
cept tags are used in these experiments. In order to evaluate the
performance of the classifiers alone, a Classification Error Rate
(CER) has also been evaluated that just takes into account the con-
cept tags but not their values.

test ref asr coverage
best class. 3.2% 9.6% 100%
agreement - 5.8% 72%

Table 1. Classification Error Rate (CER) on the concept tags ob-
tained by the best text classifier and by the agreement of all the
classifiers. ref is the reference transcription of the utterances, asr
is the output of the ASR module, coverage is the percentage of the
corpus on which the classification results are given

Table 1 shows the CER results, on the test corpus, by means
of the best text classifier. As we can see the performance is ex-
cellent on the reference transcriptions (around 97% of the tags are
correct). This indicates that text classifiers are well suited for this
understanding task. The drop in performance due to the noise gen-
erated by the ASR errors is also a strong indicator that a correction
strategy needs to be added in order to recover some of these errors.
If we look at the classification rate of the utterances that received a
High confidence label (agreement of all the classifiers), we obtain
a CER of 5.8% and the percentage of occurrences labeled with
High confidence is 72%. This indicates that the agreement rule
among the classifiers is a powerful confidence measure.

Table 2 presents the UER results obtained at different steps in
our strategy: the column High shows the performance of the agree-
ment decision rule (among the different classifiers). 72% of the test
corpus utterances have been labeled with a high confidence. In this
case we keep the first hypothesis extracted from the Structured N-
best list (named Γ1, W1) and the UER on these utterances is only
6.2% (5% on the development corpus). On the other utterances,
labeled with a Low confidence, the UER without error correction
is 23.6% (27.2% on the development corpus). This result clearly
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Development corpus
Conf High Low All
Γ, W Γ1, W1 Γ1, W1 Γc, Wc Γ1, W1 Γc, Wc

UER 5% 27.2% 17.8% 10.9% 8.4%
size 74.3% 25.7% 100%

Test corpus
Conf High Low All
Γ, W Γ1, W1 Γ1, W1 Γc, Wc Γ1, W1 Γc, Wc

UER 6.2% 23.6% 18.0% 11.3% 9.7%
size 72% 28% 100%

Table 2. Understanding Error Rate (UER) according to the confi-
dence given by the classifiers (High or Low) and the strategy used:
(Γ1, W1) means that the 1-best hypothesis is chosen, (Γc, Wc)
means that the error correction strategy is applied (only on the
Low confidence utterances). size indicates the % of the corpus
labeled with High or Low confidence. All reports the overall error
correcting performance

shows that agreement between classifiers is a very good predicate
for estimating the confidence of an hypothesis.

By applying the error correction strategy presented in this pa-
per, the UER drops to 18%, which is a relative improvement of
23.7% (34% of relative improvement on the development corpus).
The overall drop in understanding errors is about 10% on the whole
test corpus and 23% on the whole development corpus.

Furthermore we can use P (Iq | PRq) presented in section 5
in order to implement a rejection strategy: by fixing a threshold δ

on this probability, we can reject utterances that are labeled with
low confidence, when all possible corrections Iq have a probability
lower than δ.
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Fig. 2. Understanding Error Rate vs. Utterance Rejection Rate
with the error correction strategy on the test corpus

This rejection strategy is evaluated on figure 2 on the test cor-
pus. As we can see, by fixing an operating point at 10% utterance
rejection rate, the UER drops from 9.7% to 7.2% which is relative
improvement of about 25%.

7. CONCLUSION

This paper presents an error correction strategy applied to semantic
interpretation of utterances in a Spoken Dialogue context. Several

classifiers are used in order to give confidence labels to interpreta-
tions output by the Spoken Language Understanding module. If
the confidence is low, a decision-tree specifically trained in or-
der to estimate the best correction possible according to a set of
acoustic, linguistic and semantic confidence measures is applied
to the 1-best concept and word hypothesis. Results obtained on a
dialogue corpus provided by France Telecom R&D and collected
for a tourism telephone service show significant reduction in un-
derstanding error rate. Moreover, the error correction probabilities
prove to be efficient new confidence measures that can be used in
an utterance rejection decision rule.
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