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ABSTRACT 

This paper presents a novel spectral conversion method by 

considering the glottal effect on STRAIGHT spectrum to 

improve the performance of former voice conversion 

system based on codebook mapping. By introducing MoG 

model into spectral representation, STRAIGHT spectrum 

is decomposed into excitation-dependent and excitation-

independent components, which are transformed 

separately. Besides, SFC model is adopted to measure the 

prosodic characteristics of different speakers and realize 

prosodic conversion. Listening test proves that proposed 

method can effectively improve the discrimination and 

speech quality of converted speech at the same time. 

1. INTRODUCTION 

With the development of corpus-based TTS technique, the 

intelligibility and naturalness of synthesized speech has 

been improved a lot. But current corpus-based TTS 

systems always require large speech databases to 

synthesize voices of various speakers. So it is significant 

to realize a high quality voice conversion algorithm to 

provide current TTS system ability of  synthesizing 

expressive voices of multi-speakers with just a few speech 

samples of target speakers. 

Many techniques have been introduced to solve the 

problem of voice conversion. For spectral conversion, 

codebook mapping method [1] and GMM (Gaussian 

mixture model) method [2] are two main approaches. 

Considering speech synthesizer, STRAIGHT (Speech 

Transformation and Representation using Adaptive 

Interpolation of weighted spectral contour) [3], as a 

vocoder-type analysis-synthesis algorithm, has been 

applied widely in voice conversion field [2][4] for its high 

quality of reconstructed speech and flexible ability in 

parameter modification.  

Combining STRAIGHT and STASC (Speaker 

Transformation Algorithm using Segmental Codebooks), 

we have constructed a voice conversion system 

[4].Speech signals are firstly decomposed into impulse 

sequences and smoothed spectral envelopes by 

STRAIGHT. Then spectral conversion based on codebook 

mapping and prosodic conversion based on decision tree 

are implemented separately. By using a phoneme-tied 

weighting method, the smoothing effects on spectrum,  

which is caused by superposing quite different spectral 

code words and would eventually decrease speaker 

discrimination of converted speech, has been reduced 

greatly. Through above method, the source speaker’s 

characteristics have been transformed successfully to that 

of target speaker. However, there still exist two main 

problems in converted speech, the temporal discontinuity 

of converted spectrum especially the voice quality 

presentation and unstable performance of prosodic 

prediction by decision tree. In order to solve these 

problems, a voice conversion method by considering the 

glottal effect on STRAIGHT spectrum during spectral 

conversion and introducing SFC model into prosodic 

conversion is presented here. 

In the following part of this paper, an introduction to 

proposed method is presented in section 2. Section 3 

introduces the implementation of voice conversion system. 

Section 4 gives the result of evaluation and section 5 is 

conclusion.

2. METHOD DESCRIPTION 

2.1. Glottal effect on STRAIGHT spectrum 

STRAIGHT is a high performance speech analysis-

synthesis algorithm. Its basic idea is to decompose the 

speech signals into excitation and smoothed spectral 

envelop. However the excitation here is not common 

glottal waveform but impulse sequences with pitch 

intervals [5]. Thus the STRAIGHT spectrum consists of  

not only vocal tract response but also spectral 

characteristics of glottal waveform. Because the glottal 

effect presents more acoustic cues dependent on 

individuals and paralinguistic features instead of phoneme 

information, it should be converted in a different way 

from vocal tract features. On the contrary, our former 

spectral conversion method, which treats the STRAIGHT 

spectrum as a whole, would introduce inaccuracy and 
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discontinuity in voice quality of converted speech. So it is 

necessary to find a reliable method to extract the spectral 

component corresponding to spectral features of glottal 

waveforms. 

As mentioned in [5], the spectrum of glottal 

waveform has two main characteristics, Fg (glottal 

formant) and spectral tilt. The position of  Fg can be 

calculated as : 
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                                     (1) 

where f(RK) means a function of RK. From Eq.1 we can 

see that the position of Fg is dependent on T0 and some 

source related parameters, such as OQ and RK. When 

phonation type is fixed, Fg varies linearly with F0. If Fg of 

converted speech is predicted incorrectly, the source 

parameters related with voice quality would be changed. 

Figure 1 shows one frame STRAIGHT spectrum (real 

line) of vowel /a/ in Mandarin Chinese pronounced by a 

female speaker and sampled in 8kHz. For female speakers, 

the first formant of /a/ is generally above 1000Hz, so the 

first spectral peak in Figure 1 demonstrated the existence 

of glottal formant in STRAIGHT spectrum. 

Figure 1: An example of glottal formant in STRAIGHT 

spectrum and the fitting result of MOG model. The frame 

is extracted from a vowel /a/ in Mandarin Chinese 

2.2. Measuring glottal formant using MoG 

As we proved the glottal formant affects the STRAIGHT 

spectrum greatly, we consider decompose the spectrum 

into excitation-dependent and excitation-independent 

components, so that the two parts can be modified 

separately. 

Mixture of Gaussians (MoG) is introduced here to 

model the glottal formant in STRAIGHT spectrum [5]. 

MOG is a spectral modeling method and fits the 

histograms representation of speech spectrum using the 

mixture of Gaussians equation. Figure 1 shows the result 

of modeling one spectrum contour with MoG, where the 

dashed line presents the first Gaussian component, which 

is used to fit glottal formant. The result of following 

experiment proves that the parameters of the first 

Gaussian component has well linear relationship with F0 

as Eq.1 and is able to capture the characteristics of glottal 

formant.  

2.3. Spectral conversion by decomposing STRAIGHT 

spectrum 

For spectral conversion, the first step is to remove the first 

Gaussian component of MoG model from both source and 

target speaker’s STRAIGHT spectrum in the training part. 

Here the parameters of MoG model are estimated by 

Expectation Maximization (EM) algorithm. And the rest 

spectral envelop, treated as excitation-independent 

component, is modeled by an all-pole model and 

transformed into 20-order LSF coefficients. Then the 

source speaker’s LSF coefficients are converted by 

codebook mapping. Based on the linear relationship 

between F0 and Fg, we can directly rebuild the first 

Gaussian component of target speaker’s spectrum from 

the predicted F0 by SFC model. At last, the converted 

excitation-independent spectrum together with the 

predicted first Gaussian component can reconstruct the 

target speaker’s spectral envelop. 

2.4. Prosody conversion by SFC model 

Figure 2: Decompose a melodic contour as the 

superposition of the contributions of four layers. The 

dashed line is the observed F0. The solid line is the 

synthesized F0.

A trainable SFC prosodic model[6] is applied to the 

prosody conversion which considers prosodic parameters 

(F0, syllabic lengthening) are interpreted as the 

superposition of overlapping multi-parametric contours. 

These contours are associated with high-level prosodic 

features operating at different scopes, such as tones, stress, 

prosodic boundary, etc. Each feature label corresponds to 
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a metalinguistic function (morphological, lexical, 

syntactic, attitudinal…) which is represented by a neural 

network. The observed contour is the sum of the outputs 

of the corresponding neural networks (Figure 2 ). An 

analysis-by-synthesis scheme is implemented for 

automatic learning.  

We design four prosodic layers, a tone layer (two 

syllables’ concatenative tones), a word layer, a phrase 

layer and a clause layer. They are the contributions to F0 

in different scopes. The F0 contours of speakers are 

decomposed into different layers respectively.  Then the 

mapping of the corresponding features’  function in the 

corresponding layer between source speaker and target 

speaker is constructed. 

3. SYSTEM IMPLEMENTATION 

3.1.System framework 

Figure 3: Flowchart of TTS system with voice conversion 

The framework of our voice conversion system is 

illustrated in Figure 3. Our TTS system guarantees the 

optimal candidate units for source speaker. The units are 

represented by impulse sequences and smoothed spectrum 

by STRAIGHT. Then spectral conversion and prosodic 

conversion are  implemented separately. The STRAIGHT 

spectrum is decomposed into excitation-dependent and 

excitation-independent component to avoid the effect of 

glottal formant. The excitation-dependent component is  

reconstructed according to the relationship between F0

and MoG parameters. While the excitation-independent 

component of spectrum is converted by the codebook 

mapping method. And the prosodic conversion is 

performed by SFC model. Finally, we combine the 

converted spectrum and prosody into the STRAIGHT 

decoder to synthesize target speaker’s speech. 

3.2.The correlation analysis between F0 and MoG 

model parameters 

In order to prove the relationship between the first 

Gaussian component of MoG model and glottal formant, a 

correlation analysis is conducted based on 30 sentences 

which consist of 974 syllables and cover all vowels in 

Chinese of a male source speaker and  a female target 

speaker. For each syllable, the pitch contour and spectral 

envelop are decomposed by STRAIGHT and 3 continuous 

frames of spectrum with 10 ms interval are extracted from 

the middle part of each vowel. Then the MoG parameters 

of every frame spectral envelop are calculated. Here, the 

speech waveforms are resampled to 8kHz and the number 

of mixtures is set to 6. As Table 1 and 2 illustrate,  that the 

mean and the standard deviation of the first Gaussian 

component have a close relationship with  F0, which has 

been listed in Eq.1. 

No. Mean Std. Deviation 

1 0.853 0.701 

2 -0.109 0.024 

3 0.036 0.056 

4 0.048 0.019 

5 0.071 -0.068 

6 0.048 -0.041 

Table 1: The result of correlation analysis between F0 and 

MoG model parameters of a mal  source speaker

No. Mean Std. Deviation 

1 0.935 0.836 

2 0.092 0.153 

3 -0.022 0.309 

4 -0.051 0.047 

5 -0.052 0.076 

6 0.009 0.094 

Table 2: The result of correlation analysis between F0 and 

MoG model parameters of a female target speaker 

3.3. Rebuild the glottal formant 

According to the correlation between F0 and MoG 

parameters, we construct a LR (linear regression) model 

using 2922 frames of a female target speaker to predict 

the mean and standard deviation of the first Gaussian 

component with the converted F0 as independent factor. 

The linear equation is shown as follows: 
0.5448 130.548M P                                           (2) 

0.0843 83.6891V P                                                (3) 
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Where M stands for the mean and V denotes the standard 

deviation of the first Gaussian component. P is the 

converted F0 of target speaker. The energy of the first 

Gaussian component of target speaker can be  calculated 

by the ratio of  the energy of the first Gaussian component 

to a single unit. 

3.4. Predict target speaker’s F0 by SFC model 

The prediction of target speaker’s F0 based on source 

speaker’s F0 is realized by linear mapping. Training set is 

composed of four groups of 50 sentences respectively 

from four speakers. Result is showed in Table 3. We can 

see that the conversion from female to male is much better 

than from male to female and all the conversions are good 

enough for voice conversion system. 

Table 3: The prediction error of target speakers measured 

by RMSE (Hz) and correlation. 

4. EVALUATION 

We collect the same 110 synthesized sentences of a male 

and a female speaker by a corpus-based TTS system. 

Then voice conversion is conducted between the two 

speakers from both female to male and male to female. 

The first 100 sentences are used for training, and the last 

10 sentences are used for evaluation. Five listeners with 

more than two years’ experience in perceptions are asked 

to give the result of listening test.  

For comparing between the proposed method and the 

non glottal-formant-separated method, we also list the 

performance of our former system in bracket. 

4.1.Evaluation experiment on speaker individuality 

The converted speech is compared with the corresponding 

sentences of the source speaker and the target speaker to 

get evaluation based on discrimination. We use 5 grades: 

5 means very close to the target speaker while 1 is very 

close to the source speaker. The result is shown in Table 4. 

Conversion Type F to M M to F 

Average Grade 4.6 (4.6) 4.5 (4.4) 

MOS 3.7 (3.6) 3.6 (3.4) 

Table 4: Subjective evaluation results 

4.2.Evaluation experiment on speech quality 

In order to evaluate the quality of converted speech, the 

opinion test is performed, where 5 means excellent and 1 

is bad. The result is shown in Table 4. As the MOS (Mean 

Opinion Score) of  original speech synthesized by the 

TTS system is about 4.0, that there isn’t much decrease in 

the procedure of voice conversion.  

5. CONCLUSION 

The glottal effect on STRAIGHT spectrum is taken into 

account in our voice conversion system based on 

STRAIGHT and codebook mapping. At first the spectral 

component related with glottal formant is extracted from 

STRAIGHT spectrum and then rebuilt from F0, which is 

predicted by SFC model during spectral conversion. The 

excitation-independent component is converted in 

traditional codebook mapping way. Listening test proves 

that converted speech using proposed method has better 

discrimination and speech quality. However, current 

measurement of glottal effect on STRAIGHT spectrum is 

not accurate enough. To improve its performance is the 

goal of our further research. 
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Source Target 

RMSE/

Corr
Male1 Male2 Female1 Female2 

Male1 22.55/0.81 19.74/0.84 24.88/0.82

Male2 18.48 /0.86 21.07/0.87 22.46/0.89

Female1 16.50 /0.88 15.86/0.87 21.85/0.89

Female2 18.52 /0.84 15.90/0.86 20.14/0.86 
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