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ABSTRACT

This paper describes a novel spectral conversion method for the
voice transformation. We perform spectral conversion between
speakers using a Gaussian Mixture Model (GMM) on joint prob-
ability density of source and target features. A smooth spectral
sequence can be estimated by applying maximum likelihood (ML)
estimation using dynamic features to the GMM-based mapping.
However, the degradation of the converted speech quality is still
caused due to an over-smoothing of the converted spectra, which
is inevitable in the conventional ML-based parameter estimation.
In order to alleviate the over-smoothing, we propose an ML-based
conversion taking account of the global variance of the converted
parameter in each utterance. Experimental results show that the
performance of the voice conversion can be improved by using the
global variance information. Moreover, it is demonstrated that the
proposed algorithm is more effective than spectral enhancement
by postfiltering.

1. INTRODUCTION

Voice conversion is a potential technique for flexibly synthesizing
various types of speech. This technique can modify speech charac-
teristics using conversion rules statistically extracted from a small
amount of training data. A typical application of voice conversion
is speaker conversion [1]. This conversion can be extended to the
cross-language speaker conversion [2][3]. Although we focus on
the spectral conversion in this paper, prosodic conversion as well as
spectral conversion is important to more properly realize speaker
personality [4].

As a typical spectral conversion method, a mapping algorithm
using a Gaussian Mixture Model (GMM) has been proposed by
Stylianou [5]. In this method, the mapping between source and tar-
get features is determined using the GMM on joint probability den-
sity of those features [6]. In each mixture, the conditional target
mean vector for the given source vector is calculated by a simple
linear conversion using the correlation between the source and tar-
get features. The converted vector is defined as the weighted sum
of the conditional mean vectors, where the conditional probabili-
ties that the source vector belongs to each one of the mixtures are
used as weights. Although this mapping method can improve the
conversion accuracy compared with the VQ-based mapping [1],
the performance of the conversion is insufficient. The converted
speech quality is deteriorated by some factors, e.g., an excessive
smoothing of converted spectra [7] and spectral discontinuities [8].

In this paper, we perform the spectral conversion based on the
maximum likelihood (ML) criterion. In order to alleviate the spec-

tral discontinuities, we consider the correlation between frames by
applying a parameter generation algorithm with dynamic features
[9] to the GMM-based mapping. This conversion algorithm makes
it possible to estimate a more appropriate spectral sequence com-
pared with the conventional GMM-based algorithm. However, the
over-smoothing problem of the converted spectra still remains to
be solved. In order to address this problem, we propose an ML-
based conversion algorithm taking account of the global variance
of the converted spectra in each utterance. The effectiveness of us-
ing the global variance information is demonstrated by results of
objective and subjective evaluations.

The paper is organized as follows. In Section 2, the ML-based
spectral conversion is described. In Section 3, the ML-based spec-
tral conversion considering the global variance is described. In
Section 4, experimental evaluations are described. Finally, we
summarize this paper in Section 5.

2. ML-BASED SPECTRAL CONVERSION

We use 2D-dimensional acoustic features X t =
[
x�

t , ∆x�
t

]�
(source speaker’s) and Y t =

[
y�

t , ∆y�
t

]�
(target speaker’s) con-

sisting of D-dimensional static and dynamic features, where � de-
notes transposition of the vector. As described in [6], a GMM on
joint probability p(X , Y |Θ) is trained in advance with training
data consisting of time-aligned features determined by Dynamic
Time Warping (DTW), where Θ denotes model parameters. The
i-th mixture has a weight wi, mean vectors µ

(X)
i and µ

(Y )
i , and

covariance matrices Σ
(XX)
i , Σ(XY )

i , Σ(Y X)
i , and Σ

(Y Y )
i . In this

paper, we use the diagonal covariance matrices.

2.1. Likelihood function for spectral conversion

Let X =
[
X�

1 , X�
2 , · · · , X�

T

]�
be a time sequence of the source

feature vectors and Y =
[
Y �

1 , Y �
2 , · · · , Y �

T

]�
be that of the tar-

get feature vectors. We perform the spectral conversion based on
maximizing the following likelihood function,

p(Y |X ,Θ) =
∑

all m

p(m|X ,Θ)p(Y |X , m,Θ), (1)

where m = {mi1, mi2, · · · , miT } is a mixture sequence. At
frame t, p(mi|X t,Θ) and p(Y t|X t, mi,Θ) are given by

p(mi|X t,Θ) =
wiN(X t; µ

(X)
i ,Σ

(XX)
i )∑M

j=1 wjN(X t; µ
(X)
j ,Σ

(XX)
j )

, (2)

p(Y t|X t, mi,Θ) = N(Y t; Et(mi), D(mi)), (3)
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where

Et(mi) = µ
(Y )
i + Σ

(Y X)
i Σ

(XX)
i

−1
(X t − µ

(X)
i ), (4)

D(mi) = Σ
(Y Y )
i − Σ

(Y X)
i Σ

(XX)
i

−1
Σ

(XY )
i . (5)

The total number of mixtures is M . The normal distribution with
µ

(X)
i and Σ

(XX)
i is represented as N(X t; µ

(X)
i ,Σ

(XX)
i ).

2.2. Spectral determination by maximizing likelihood

We consider the optimum mixture sequence m for maximizing
the likelihood function. First, m is determined so that the output
probability p(X |m,Θ) is maximized. Then, the logarithm of the
likelihood function is written as

log p(Y |X , m,Θ)=−1

2
Y �D−1

mY +Y �D−1
mEm+K, (6)

where

Em = [E1(mi1), E2(mi2), · · · , ET (miT )] , (7)

D−1
m = diag

[
D(mi1)

−1, D(mi2)
−1, · · · , D(miT )−1] . (8)

The constant K is independent of Y . The relationship between a

sequence of the static feature vectors y =
[
y�

1 , y�
2 , · · · , y�

T

]�
and a sequence of the static and dynamic feature vectors Y can be
represented as a linear conversion,

Y = W y, (9)

where W is a transformation matrix described in [9]. We set coef-
ficients of a delta window to (-0.5, 0, 0.5) in this paper. Under the
condition (9), y that maximizes the logarithmic likelihood func-
tion is given by

y =
(
W �D−1

mW
)−1

W �D−1
mEm . (10)

We can also maximize the logarithm of the likelihood function
p(Y |X ,Θ) by employing the EM algorithm [9]. There was little
difference between the conversion accuracy when using the opti-
mum mixture sequence and that when using the EM algorithm in
our preliminary experiments.

Results of our informal evaluations showed that the ML-based
conversion causes the performance improvement of voice conver-
sion compared with the conventional GMM-based conversion [5].
These results were similar to those described in [10].

3. ML-BASED SPECTRAL CONVERSION
CONSIDERING GLOBAL VARIANCE

3.1. Global variance

The global variance of the static feature vectors in each utterance
is written as

v(y) =
[
v(1), v(2), · · · , v(D)

]�
, (11)

v(d) =
1

T

T∑
t=1

(
y
(d)
t − 1

T

T∑
τ=1

y(d)
τ

)2

, (12)

where y
(d)
t is the d-th component of the target static feature vector

at frame t.
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Fig. 1. Global variance of mel-cepstra in an utterance. The average
of global variances in 50 utterances is shown in each case.

Figure 1 shows global variances of the converted mel-cepstra
and of the natural mel-cepstra of target speech. The experimen-
tal conditions are the same as afterward described in Section 4.1.
It can be observed that the global variances of the converted mel-
cepstra are smaller than those of the natural mel-cepstra. Removed
variance features are regarded as a noise in modeling acoustic
probability density. Surely, this smoothing causes error reduction
of the spectral conversion. However, it also causes the degradation
of the converted speech quality because those removed features are
still necessary for synthesizing high-quality speech.

3.2. Spectral conversion considering global variance

We define a new likelihood function consisting of two probabili-
ties for a sequence of the target feature vectors and for the global
variance of the target static feature vectors as follows:

L = log {p(Y |X , m,Θ)ω · p(v(y)|Θv)} , (13)

where p(v(y)|Θv) is modeled by the normal distribution. A set
of model parameters Θv consists of the mean vector µ(v) and the
covariance matrix Σ(vv) for the global variance vector v(y). The
constant ω denotes the weight for the likelihood of the target fea-
ture vector sequence. In this paper, ω is set to the ratio of the
number of dimensions between v(y) and Y , i.e., 1/(2T ).

In order to maximize the likelihood L with respect to y, we
employ a steepest descent algorithm using the first derivative,

∂L

∂y
=

(
−W �D−1

mW y + W �D−1
mEm

)
ω

+
[
v
(1)
1

′
, v

(2)
1

′
, · · · , v

(1)
2

′
, v

(2)
2

′
, · · · , v

(D)
T

′]�
, (14)

v
(d)
t

′
= − 2

T

D∑
i=1

s(d,i)
v

(
v(i)−µ(i)

v

)(
y
(d)
t − 1

T

T∑
τ=1

y(d)
τ

)
, (15)

where µ
(i)
v and s(d,i) denote the i-th component of µ(v) and the

element in the d-th row and the i-th column of Σ(vv)−1
, respec-

tively. The target static sequence estimated from Eq. (10) is used
as the initial parameter.

In this paper, we calculate µ(v) and the diagonal covariance
matrix Σ(vv) using the target static feature vectors in the train-
ing data. We can also estimate these parameters in each utterance
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from other features, e.g., the global variance of the given source
feature vectors or that of the converted vectors by Eq. (10). In
our preliminary experiment, there was not the large difference be-
tween results when using the parameters directory extracted from
the training data and when using the estimated parameters.

4. EXPERIMENTAL EVALUATIONS

In order to investigate the effectiveness of using the global variance
information, we compared the proposed algorithm (“MLGV”) with
the ML-based conversion not considering the global variance (“ML”)
and the ML-based conversion with spectral enhancement by post-
filtering (“ML+PF”) [11] in the speaker conversion.

4.1. Experimental conditions

We performed male-to-female and female-to-male voice conver-
sions using MOCHA database [12] consisting of 460 sentences in
each speaker. We selected 50 sentences at random as an evaluation
set. Then, we selected 50 sentences as a training set from remain-
ing 410 sentences so that the diphone coverage for all sentences
was maximized. The resulting diphone coverage of the training
set was 91.4%. The total duration of the training data of which si-
lence parts were removed was 2.7 minutes for the female speaker
and 2.3 minutes for the male speaker.

We used mel-cepstrum as a spectral feature. The first through
24-th mel-cepstral coefficients were extracted from 16 kHz sam-
pling speech data. The STRAIGHT analysis method [13] was em-
ployed for the spectral extraction.

We determined the optimum number of mixtures so that the
mel-cepstral distortion between the converted and target mel-cepstra
was minimized in the evaluation set. As a result, the number of
mixtures was set to 128.

We performed objective evaluations based on the likelihood
and subjective evaluations on the converted speech quality and the
conversion accuracy for speaker individuality. We varied the coef-
ficient β of the postfilter for mel-cepstrum [11] from 0.1 to 0.8. In
order to measure only the performance of the spectral conversion,
we synthesized the converted speech using the natural prosodic
features automatically extracted from target speech as follows. A
time-alignment for modifying duration was performed with DTW,
and then at each frame, F0 and total power of the converted linear
spectrum were set to each target value. The STRAIGHT synthesis
method [13] was employed as a speech synthesizer.

4.2. Objective evaluation

Table 1 shows the logarithmic likelihood on the mel-cepstral se-
quence log p(Y |X ,Θ), which is normalized by the number of
frames. Results for the natural mel-cepstral sequence of the target
are also shown in this table. It is reasonable that the likelihood
decreases by applying the criterion on the global variance or the
postfilter to the ML-based conversion. However, the likelihoods in
those cases don’t fall below those of the target mel-cepstrum.

Table 1 also shows the logarithmic likelihood on the global
variance log p(v(y)|Θv). It can be seen that the likelihoods in the
ML-based conversion are very low. Although the likelihood can be
improved by using the postfilter, the improved likelihood is much
lower than that of the target. On the other hand, the likelihood
when considering the global variance (“MLGV”) is larger than that
of the target.

Table 1. Logarithmic likelihood on mel-cepstral sequence and
logarithmic likelihood on global variance. Left numbers in each
column show results for the female-to-male conversion, and right
numbers show results for the male-to-female conversion.

Mel-cepstra Global variance

ML 113.7 109.6 −36.1 −112.0
MLGV 107.7 103.1 136.6 136.5
ML+PF (β = 0.1) 113.2 109.2 −16.8 −91.3
ML+PF (β = 0.2) 112.0 108.4 1.1 −72.1
ML+PF (β = 0.3) 110.0 107.0 16.8 −55.2
ML+PF (β = 0.4) 107.3 105.2 29.2 −41.7
ML+PF (β = 0.5) 103.9 102.8 37.3 −32.7
ML+PF (β = 0.6) 99.8 100.1 40.1 −29.3
ML+PF (β = 0.7) 95.1 96.9 36.2 −32.8
ML+PF (β = 0.8) 90.0 93.4 24.5 −44.6
Target 86.5 82.2 120.7 118.6
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Fig. 2. An example of spectra of (a) target speech, (b) converted
speech by the ML, and (c) converted speech by the ML using
global variance, for a sentence fragment “farmers grow oats.”

These results demonstrate that the converted mel-cepstral se-
quence having similar characteristics to the target is estimated by
applying the criterion on the global variance to the ML-based con-
version. An example of spectra of the target and converted voices
is shown in Fig. 2.

4.3. Subjective evaluation

We performed a MOS test on speech quality and XAB test on
speaker individuality. In the MOS test, an opinion score was set to
a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad). In
the XAB test, an analysis-synthesized target speech was presented
as X, and the converted voices were presented as A and B. Lis-
teners were asked to choose either A or B as being more similar
to X. We used 25 sentences in the evaluation set1. The number of
listeners was five.

Figure 3 shows results of the MOS test. The proposed al-
gorithm can obviously improve the converted speech quality. Al-
though the spectral enhancement by postfiltering is also effective
for improving the quality, the improved quality is inferior to that
by the proposed algorithm. In postfiltering, the mel-cepstral coef-
ficients except for the first coefficient are basically emphasized at
a constant rate [11]. Whereas, in the ML using the global variance,
the emphasis rate is varied according to the conditional probabil-
ity distribution at each of frames and dimensions. Therefore, more
reasonable enhancement is performed compared with postfiltering.

1Some samples are available in
http://kt-lab.ics.nitech.ac.jp/˜tomoki/ICASSP2005/index.html
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Fig. 3. Results of MOS test on speech quality. “Target” shows the
result for analysis-synthesized target speech using the 0-th thor-
ough 24-th mel-cepstral coefficients.
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Fig. 4. Results of XAB test on speaker individuality. Preference
score shows the rate of judging that the converted speech by the
ML using global variance is more similar to the target compared
with that by the other methods.

Figure 4 shows results of the XAB test. It is observed that
the proposed algorithm can synthesize a more similar speech to
the target than the other methods. It seems that these results are
caused by the improvement of speech quality while keeping the
characteristics of target spectra. Since it might be that the global
variance feature itself contributes to the speaker individuality, we
will further investigate the effect of using the global variance in-
formation on speaker conversion.

5. CONCLUSIONS

We proposed a spectral conversion method based on maximum
likelihood considering the global variance of the converted param-
eter in each utterance. Experimental results demonstrated that the
performance of voice conversion can be significantly improved by
using the global variance information. Moreover, it was shown
that the proposed algorithm is more effective than the postfilter-
based spectral enhancement. We can apply the proposed method

to both spectral and F0 generation algorithms for the HMM-based
Text-to-Speech synthesis [11].

Acknowledgment: This research was supported in part by JSPS
(Japan Society for the Promotion of Science) Research Fellow-
ships for Young Scientists. The authors are grateful to Prof. Hideki
Kawahara of Wakayama University in Japan for permission to use
the STRAIGHT analysis-synthesis method.

6. REFERENCES

[1] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara. Voice
conversion through vector quantization. J. Acoust. Soc. Jpn.
(E), Vol. 11, No. 2, pp. 71–76, 1990.

[2] M. Abe, K. Shikano, and H. Kuwabara. Statistical analysis
of bilingual speaker’s speech for cross-language voice con-
version. J. Acoust. Soc. Am., Vol. 90, No. 1, pp. 76–82, 1991.

[3] M. Mashimo, T. Toda, H. Kawanami. K. Shikano, and N.
Campbell. Cross-language voice conversion evaluation using
bilingual databases. IPSJ Journal, Vol. 43, No. 7, pp. 2177–
2185, 2002.

[4] M. Tamura, T. Masuko, K. Tokuda, and T. Kobayashi. Adap-
tation of pitch and spectrum for HMM-based speech synthe-
sis using MLLR. Proc. ICASSP, pp. 805–808, Salt Lake City,
USA, May 2001.

[5] Y. Stylianou. Harmonic plus Noise Models for Speech,
Combined with Statistical Methods, for Speech and Speaker
Modification. Ph.D. Thesis, Ecole Nationale Supérieure des
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