
WEB-BASED EXPERIMENTS FOR INTRODUCING

SPEECH RECOGNITION BASICS IN A DSP COURSE 

Venkatraman Atti and Andreas Spanias 

Department of Electrical Engineering, MIDL Lab 

Arizona State University, Tempe, AZ 85287-5706, USA 

[atti, spanias]@asu.edu 

ABSTRACT

In this paper, we describe web-based educational software tools 

tailored to expose students in an undergraduate DSP course to 

the basics of hidden Markov model (HMM)-based speech 

recognition. In particular, we developed Java software that 

enables on-line computer laboratories on the essential pre-

processing, HMM, and Viterbi algorithms as used in a basic 

speech recognition task. The software is complemented by 

streaming lectures, a set of on-line demonstrations with 

animation, and exercises that take the student through HMM 

training and recognition. The software is being made available to 

students in the Fall of 2003 and we expect to present assessment 

results at the conference. 

1. INTRODUCTION

Speech recognition is an area in signal processing that is having 

a major impact in applications that involve a machine-human-

interface. Although algorithms and hardware supporting speech 

recognition applications are still evolving, it is expected that the 

integration of language modeling and artificial intelligence 

algorithms in the next 5 to 10 years will enhance considerably 

speech recognition accuracy, which will in turn enable several 

new applications and products. A common perception, among 

the experts in the field, is that the number of practitioners and 

researchers trained by universities in the field is relatively small. 

Furthermore, most of the graduating engineers from Electrical 

and Computer Engineering departments are not exposed to the 

basic tools supporting this application. At Arizona State 

University, as part of an effort to introduce undergraduates in 

DSP to application-oriented content, we are developing a series 

of on-line modules that include JavaTM software, animated 

demonstrations, computer exercises, and video streamed 

lectures. This paper describes in particular, the Java software 

development aspects of this effort. Although HMM-based 

speech recognition research has been well published [1]-[3] and 

supported by advanced software tools for the expert, there are no 

educational tools tailored specifically for the novice. For 

instance, the hidden Markov model Toolkit (HTK) [4] developed 

by S. Young et al. represents a set of highly sophisticated 

programs designed primarily for research purposes. The 

software tools we developed provide hands-on training to DSP 

class participants. The software consists of roughly 5000 lines of 

Java code and is accompanied by a series of computer 

experiments that addresses the various stages of a typical speech 

recognition unit. These Java speech recognition modules have 

been integrated in the Arizona State University’s award-winning 

on-line simulation software called J-DSP† [5]-[8]. Hence, the 

Java software for speech recognition will be described in the 

context of the J-DSP graphical user interface (GUI).  

B1 B2 B3 B4
B1 B2 B3 B4
B1 B2 B3 B4

Figure 1. The HMM module in J-DSP 

The rest of the paper is organized as follows. Section 2 

gives an overview of the J-DSP simulation environment and the 

various speech recognition modules integrated in J-DSP. Next, 

Section 3 addresses the front-end analysis modules and the three 

exercise sets developed. Section 4 reviews the HMM training 

procedure with an example simulation. Figure 1 depicts the 

HMM GUI designed in J-DSP to emphasize the HMM training 

procedure. A brief description on the HMM GUI is also included 

in Section 4. Section 5 describes the recognition unit. Finally, 

Section 6 presents the conclusion. 

†
 Work funded in part by NSF-CCLI-0089075. J-DSP has been ranked 

in the top three learning resources for the year 2003 by the NEEDS. 

V - 10450-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



2. J-DSP SIMULATION ENVIRONMENT AND THE 

SPEECH RECOGNITION MODULES 

Figure 2 shows the simulation tool’s editor window. From this 

figure, it can be seen that all functions appear as graphical 

blocks. Each one of these blocks is associated with a specific 

signal processing function. A variety of DSP systems can be 

simulated by connecting the blocks, and editing their parameters 

through dialog windows. System execution is dynamic, which 

means that any change at any point of a simulation will 

automatically take effect in all related blocks. More detailed 

instructions on block manipulation can be obtained from [5]. 

The various speech recognition modules implemented in J-DSP 

are listed in Table 1. These blocks are divided into three sub-

sections, i.e., feature extraction, HMM, and built-in demos, 

based on their functionality. 

Sig. Gen (L) Pre-emphasis Windowing

FFT Mel Scale
Cepstral

weighting

Delta

Cepstrum

Sig. Gen (L) Pre-emphasis Windowing

FFT Mel Scale
Cepstral

weighting

Delta

Cepstrum

Sig. Gen (L) Pre-emphasis Windowing

FFT Mel Scale
Cepstral

weighting

Delta

Cepstrum

Figure 2. An example speech recognition simulation in J-DSP 

3. FRONT-END ANALYSIS MODULE IN J-DSP 

The first stage in a typical speech recognition system constitutes 

a feature extraction block. In particular, the main objective is to 

convert the raw acoustic speech into a form that is well-suited 

for automatic speech recognition (ASR) [1]. Figure 3 shows the 

front-end analysis GUI (upper dialog window) designed to 

examine the various aspects of pre-emphasis filtering, mel-

spectrum, and mel-cepstrum.  

Figure 3. Front-end analysis to obtain the feature vectors 

The lower window in Figure 3 provides options to set the 

parameters for pre-processing. First, the pre-emphasis 

coefficient, a, corresponding to a simple first-order FIR filter (1) 

is set.
1( ) 1H z az (1)

Next, a windowing operation is performed to obtain a smoother 

evolution of the LP filter, thereby providing better spectral 

estimates. The available window functions are: Hamming, 

Bartlett, rectangular, and Kaiser. Next, the short-time power 

spectrum of the windowed speech is computed using either a 

256-point FFT or linear prediction (LP) analysis. A set of L

triangular band-pass filters, spaced in mel-frequency scale, are 

applied to the short-time power spectrum. The mel-cepstral 

coefficients, ci, are then computed by taking an L-point discrete 

cosine transform (DCT) as follows: 

1

( )
2

log( )cos ( 0.5) 0,1,..., 1
L

i
m

S m
i

c m i C
L L (2)

where S(m) represents the mel-spectrum energy and C the 

number of mel-frequency cepstral coefficients (MFCC). Both, L

and C are user-defined parameters. From the example simulation 

in Figure 3, it can be noted that L = 40, C = 13, and the number 

of speech frames, Nf = 32 (not shown in the figure) that result in 

an observation vector of size 1 x 416.

3.1. Exercise Sets – I, II, and III 

A concise description of the first three exercise sets follows [5]. 

The first exercise set illustrates the following: a) the effects of 

pre-emphasis filtering over voiced and unvoiced segments and 

for different pre-emphasis filter coefficients; b) the significance 

of pre-emphasis filtering in the automatic formant tracking; and 

c) the analysis of pre-emphasis filtering in the pole-zero domain. 

The second exercise set involves experiments with: a) different 

windows; b) various FFT sizes (typically 64, 128, and 256-

point); c) number of mel filters (L=10, 20, and 40); and  

d) analyze the similarities between the triangular band-pass mel-

filtering and the weighted Daniel periodogram. The third 

Table 1. A list of speech recognition modules in J-DSP 

Block Name Block Description 

Pre-emph. Pre-emphasis filtering 

Mel-Scale Computes the mel-spectral coefficients

Mel-Cepst. Computes the mel-cepstral coefficients

Cepst. Weight. Performs cepstral weighting 

F
ea

tu
re

 e
x

tr
ac

ti
o

n
 

Delta-Cepst. Computes the delta-mel-cepstrum 

HMM Training Designs HMMs 

H
M

M

Recognition-unit Performs Viterbi decoding 

Front-end-Anlys. Pre-processing stage demo 

Isolated-dig-Rec. Isolated digit recognition (IDR) demo 

D
em

o
s

HMM Basics Example demos to introduce HMMs 

V - 1046

➡ ➡



exercise set primarily highlights the aspects of using a DCT in 

computing the cepstral coefficients. The student will also run a 

pre-configured simulation in J-DSP to analyze the mel-spectrum 

obtained from both the FFT-based and the LP analysis-based 

methods.

4. HMM TRAINING IN J-DSP 

This section addresses the HMM functionality and the associated 

GUI implemented in J-DSP. Figure 4 shows the sequence of 

steps typically employed in training HMMs. In this figure, a 

simple isolated digit recognition scenario is considered to 

highlight these steps; and it should be noted that we will confine 

to high-level descriptions while explaining the HMM design 

procedure. An HMM model, , is usually characterized by the 

four parameters given by, 

( , , , )N A B (3)

where ‘N’ is the number of states in the model, ‘ ’ the initial 

state distribution, ‘A’ the state transition matrix, and ‘B’ the state 

observation probability distribution. 

First, the observation vectors Ot, obtained from the front-

end analysis are used to initialize the hidden Markov model. 

Next, the forward ( ) and backward ( ) variables are computed 

based on the initial HMM model. A detailed mathematical 

development and the design equations for the forward and 

backward variables can be found in [2]. Using  and , we 

compute another set of parameters  and  in order to re-estimate 

the HMM model ( , A, B) as shown in Figure 4. A log-

likelihood, Ll is computed for each iteration from the re-

estimated HMM model as follows: 

log( ) log( ) log( ) (dB)
l

L A B (4)

The training process will be terminated when two adjacent log-

likelihood values remain approximately the same, resulting in a 

final HMM model, d. In the training procedure mentioned here, 

we considered the continuous HMM, while the simulations 

involving discrete HMMs and VQ can also be performed in       

J-DSP. In the example simulation shown in Figure 5, the number 

of states is N = 4 and the HMM model is estimated for ‘digit-2’. 

Figure 4. The HMM training process 

Section - I

Section - V

Section - II

Section - III

Section - IV

B1 B2 B3 B4

Section - I

Section - V

Section - II

Section - III

Section - IV

Section - I

Section - V

Section - II

Section - III

Section - IV

B1 B2 B3 B4

Figure 5. The GUI depicting the HMM training in J-DSP 

4.1. HMM GUI Description 

The HMM dialog window shown in Figure 5 consists of five 

sections. The first-section provides options to choose the number 

of states, N in the HMM model. The second-section primarily 

helps the user to select the files for HMM training. The dialog 

window shown in Figure 6 facilitates the file-selection process. 

Furthermore, options are provided to add noise to the input files 

(explained later in detail while discussing the exercise set-VI). 

The third-section provides access to the help topics and the on-

line HMM documentation [5].  

The fourth-section is the most important part of the GUI 

that essentially explains the training procedure through graphics. 

This section consists of four parts – (i) the top-left corner 

provides information that reflects the simulation status; (ii) the 

top-right corner presents the changes in the transition 

probabilities in the form of a matrix; (iii) the middle portion 

shows the animations of the four states (the circles) and their 

corresponding transition probabilities; and, (iv) the bottom part 

presents the plots of the observation probability distribution 

associated with each state. Finally, the fifth-section includes the 

push-buttons (‘Start Training’, ‘Next Iteration’, ‘Next Digit’,

and ‘Reset HMM’) that control the simulation. Moreover, 

options are provided to reset the file section or to reset the HMM 

model at any point of the simulation process. Next, we present 

the computer experiments designed to review the HMM training 

procedure.

4.2. Exercise Sets – IV, V, VI and VII 

The fourth exercise set deals with the implementation of an 

isolated digit recognition system using the three modules, i.e., 

the front-end analysis, the HMM training, and the recognition. 

Moreover, this computer experiment helps students to get 

V - 1047

➡ ➡



acquainted with the HMM GUI and understand the basic steps 

involved in the HMM design procedure. The fifth exercise set is 

an extension of the previous one and helps students analyze the 

performance of the HMMs designed by varying the number of 

states, changing the feature vector size, and various other front-

end analysis parameters. 

Figure 6. File selection dialog window for HMM training 

The exercise sets VI and VII are more advanced relative to 

the previous experiments and are primarily concerned with 

evaluating speech recognition in the presence of noise and for 

different training files. Figure 6 shows the dialog window 

designed for the file selection in HMM training. In the sixth 

exercise set, students study the implications of using noisy files 

in the training process. Different signal-to-noise ratio (SNR) 

levels can be set by selecting a specific dB-value using the 

option-(3) shown in Figure 6. The option-(2) in this figure 

allows users to choose a noise type from the following: white 

noise, Gaussian noise, colored noise, and background music. 

The seventh exercise set is concerned with evaluating the 

performance of the HMMs designed based on training files 

chosen from both with-in and outside the training set. Pre-

configured HMM demos are developed in J-DSP that expose 

students to the step-by-step procedure of training HMMs. 

Moreover, the exercise sets VI and VII have a partial overlap 

with the Viterbi decoder experiments that are discussed next. 

5. RECOGNITION UNIT – THE VITERBI DECODER 

The recognition module implemented in J-DSP evaluates the 

conditional observation probability, P(Ot| d) for each HMM 

model, and chooses the corresponding model that yields the 

highest probability. Estimating the probability, P(Ot| d) involves 

finding the optimal state sequence, i.e., finding the path (in a 

trellis of states) that has the highest probability. This can be 

done efficiently using the Viterbi algorithm [2].  

Trellis back-tracking

Observation time, t

State, N

1

2

3

4

1 2 3 4 5 6

-15.2

-17.9

-29.4

-12.6

Trellis back-tracking

Observation time, t

State, N

1

2

3

4

1 2 3 4 5 6

-15.2

-17.9

-29.4

-12.6

Figure 7. Trellis back-tracking in J-DSP 

5.1. Exercise Sets – VIII, IX, and X 

The underlying principles of trellis back-tracking are illustrated 

in the eighth exercise set. More emphasis is laid on illustrating 

the process involved in estimating the optimal state sequence. 

Figure 7 shows the GUI developed in J-DSP for studying the 

trellis back-tracking process. In the exercise sets IX and X, the 

students test the recognition performance by varying the number 

of training files and in the presence of noise. The students are 

asked to report the baseline results for an IDR scenario. The 

exercises that have been outlined here in this paper as well as 

additional ones not described here are given to students with 

detailed write-ups that have a theory section and step-by-step 

instructions for operating the software. 

6. CONCLUSIONS

This paper presented simulation modules and exercises to teach 

the HMM-based speech recognition techniques in an 

undergraduate DSP course. The exercise sets I through X are 

designed such a way that they can be included in a course as one 

comprehensive term-project that essentially addresses the basic 

concepts of HMM-based speech recognition. 

7. ACKNOWLEDGEMENT

The authors would like to acknowledge all the students (S. 

Benton, N. Chakravarthy, A. Natarajan, C. Panayiotou, S. 

Sabesan, Y. Song, T. Thrasyvoulou, and B.Veeramani) of the 

speech recognition class, a special course offered during the 

Spring of 2003 at ASU, for their valuable feedback that 

influenced this work. 

8. REFERENCES

[1]. L. R. Rabiner, “A Tutorial on Hidden Markov Models and 

Selected Applications in Speech Recognition,” Proc. IEEE,

77(2), pp. 257-286, February 1989. 

[2]. L. R. Rabiner and B. H. Juang, Fundamentals of Speech 

Recognition. New Jersey: Prentice Hall, 1993. 

[3]. The ISIP web-page, Mississippi State University: 

http://www.isip.msstate.edu/projects/speech/index.html

[4]. Hidden Markov Model Toolkit (HTK): 

http://htk.eng.cam.ac.uk/ 

[5]. The J-DSPTM web-page, MIDL LAB, Arizona State 

University: http://jdsp.asu.edu  

[6]. A. Spanias, et al, “Development of new functions and 

scripting capabilities in Java-DSP for easy creation and seamless 

integration of animated DSP simulations in Web courses,” in 

Proc. of IEEE ICASSP, Vol. 5, pp. 2717-2720, May 2001. 

[7]. A. Spanias, et al, “On-line laboratories for speech and image 

processing and for communication Systems Using J-DSP,” in 2nd

DSP-Education workshop, Pine Mountain GA, Oct 13-16, 2002. 

[8]. V. Atti, et al, “On-line simulation modules for teaching 

speech and audio compression,” in 33rd ASEE/IEEE FIE-03,

Boulder, Nov. 2003 

V - 1048

➡


