<

A VERSATILE DSP-SYSTEM FOR STUDENT-PROJECTS ON EMBEDDED REAL-TIME
AUDIO SIGNAL PROCESSING

Hauke Kriiger, Thomas Lotter, and Peter Vary

Institute of Communication Systems and Data Processing
Aachen University of Technology
Templergraben 55, D-52056 Aachen, Germany
e-mail: {krueger , lotter, vary}@ind .rwth-aachen.de

ABSTRACT

In this contribution a new software environment for an embedded
system is presented that is part of a laboratory for teaching students
in Digital Audio Signal Processing. This environment enables
even students with only a limited background in programming em-
bedded technology to achieve remarkable implementations of real-
time projects including runtime user interaction. Hardware and
algorithm related programming issues are separated for audio pro-
cessing and interactive messaging. While the hardware related part
is provided along with the software environment the students can
completely focus on algorithmic aspects. A well defined interface
builds the bridge between the two programming components.
Examples are presented to demonstrate the flexibility and efficiency
of the given software platform. The underlying projects were de-
fined, implemented and finally demonstrated by students in an in-
teractive real-time demonstration.

1. INTRODUCTION

Specifying a laboratory course that on the one hand comprises an
interesting challenge and on the other hand considers the large va-
riety of personnel interest and background knowledge of students
inheres an educational burden. One way to achieve this goal is to
offer a project oriented laboratory: The students are grouped into
small teams of two or three persons and each group defines its own
educational program, a project. This project will be planned and
accomplished by the students themselves with support from super-
visors.
In this context we offer a laboratory “Digital Signal Processing”.
This laboratory is based on projects that groups of students define
and finally complete in a given time period of one semester. Prior
to the project phase the students are given an introduction into Dig-
ital Signal Processing.
The final goal of the project is to demonstrate an algorithm from
the field of Digital Signal Processing on an embedded real-time
platform containing a real-world Digital Signal Processor (DSP)
that is well suited for two-channel audio processing with up to high
fidelity quality. In order to have a flexible demonstration a PC can
be used for interactive messaging to e.g. switch the demonstrated
algorithm on or off or to control parameters at runtime. During
the demonstration the signal from e.g. a CD-player or two micro-
phones (Source) is processed by the DSP and the resulting audio
signal played back by a loudspeaker (Playback). Figure 1 illus-
trates the setup for the real-time demonstration.

Creating the software to run the embedded board from scratch

0-7803-8484-9/04/$20.00 ©2004 IEEE

V -1033

Playback
7

Embedded Board

Fig. 1. System for interactive real-time Demonstration.

requires a lot of programming of functionalities that have adminis-
trative character and thus is not relevant for the educational goal of
teaching Digital Signal Processing. In order to liberate the students
from these programming issues, we have created a software envi-
ronment that separates the complete real-time program into two
components: The first component comprises the implementation
of the basic functionality (operating system) for running the em-
bedded system and deals with functional parts that every algorithm
will require to function properly. This for example includes the ini-
tialization of the hardware components of the embedded board.
The second component contains the algorithm of the student’s pro-
ject. Each algorithm comprises processing and messaging related
functionalities. This component is implemented by the students.
In order to create the bridge between the two components a well
defined interface is used.

For educational purposes besides learning the basic functional-
ity to run a DSP (machine-intimate programming, assembly lan-
guage) the students will be introduced to the usage of the provided
interface.

In this paper we present the functionality of the software environ-
ment that builds the basis for the student’s projects. Besides using
the environment for teaching purposes the whole system also is a
good starting point for creating real-time prototypes for new algo-
rithms based on embedded DSP technology.

In section 2 the basic concept and educational program of the lab-
oratory is described. In section 3 the hardware setup for the real-
time demonstration is introduced.The software environment and
in special the interfacing functionality the student’s projects are
based on are explained in section 4. Section 5 gives examples of
student-projects during the last semesters. Conclusions are drawn
in section 6.

ICASSP 2004

2. LABORATORY FOR DIGITAL SIGNAL PROCESSING

Our laboratory ”Digital Signal Processing” aims at students who
have finished the undergraduate courses and have basic knowledge
about signal processing. In general they are in the third or fourth
year of studies. Groups of two or three persons are combined for
each project, the duration of the laboratory is roughly 13 weeks
(one semester), while each group works for four hours each week.
The laboratory consists of two phases to give an introduction to
Digital Signal Processing first and to accomplish the self defined
projects afterwards:

2.1. Laboratory Phase 1: The Introduction

In the first phase of the laboratory the students are introduced to the
fundamentals of Digital Audio Signal Processing: The high-level
programming languages MATLAB and SIMULINK are available
to the students, and exercises such as quantization/sampling and
Discrete Fourier Transform are solved with these languages as a
practical application. Furthermore the students learn the basics in
designing and realizing Digital Filters, comprising Finite Impulse
Response (FIR) as well as Infinite Impulse Response (IIR) Filter
implementations. In order to build the bridge to the real-time im-
plementation the students study real-time programming with focus
on embedded technology and Digital Signal Processing. This com-
prises principles of interrupt driven machine intimate program-
ming, assembly syntax and also efficient implementations of the
filter structures from previous exercises. Finally the software plat-
form for the embedded real-time system is introduced. Exercises
help the students to understand the fundamentals of the system and
the integration of their own components.

2.2. Laboratory Phase 2: The Project

In the second phase of the laboratory the students define the project
that they wish to implement in the following weeks. They either
provide their own ideas or select from a list of predefined projects.
After the selection they start to develop and investigate the cho-
sen algorithm with MATLAB or SIMULINK first. Afterwards the
algorithm is implemented on the embedded real-time system in
order to achieve the interactive real-time program for the demon-
stration of the chosen algorithm. This real-time demonstration will
be accompanied by a short presentation in front of all participating
students at the end of the laboratory course.

The programming is completely based on assembly language due
to the achievable performance.

2.3. Learning Goals

Besides learning the basics in Digital Audio Signal Processing the
students also learn soft skills due to the project oriented character
of the laboratory. Starting with the beginning of laboratory phase
2 the projects will have to be planned and worked on by the whole
group and finally a presentation will have to be held in front of all
participating students. Thus the students learn..

e to plan their project.
e to understand and apply Digital Signal Processing.
e to work as a team.

e to integrate their software in a given software project.

to present the achieved results in front of a group.

3. SYSTEM FOR REAL-TIME DEMONSTRATION

The system for the real-time demonstration comprises an embed-
ded board including a DSP for Signal Processing and a PC for
software development and runtime control of the embedded plat-
form.

3.1. Embedded platform

The platform used is called ADSP-21065L EZ-LAB from Analog
Devices'. The appendant ADSP-21065L SHARC processor sup-
ports floating and fixed point arithmetic and has a 60 MHz clock.
Thus, considering the maximum of 3 operations available during
each clock cycle, the processor reaches a computational power of
180 Million Floating Point Operations Per Second (MFLOPS).
The processor can be controlled using a JTAG connection [2].
For Analog-To-Digital and Digital-To-Analog Conversion (ADC,
DAC) a hardware component can be programmed to support sam-
pling rates in between 7 and 48 kHz, adjustable in steps of 1
kHz, with a quantization accuracy corresponding to 16 Bit for each
sample (AD1819A Soundport Codec from Analog Devices, [3]).
For the runtime messaging a hardware component from National

Semiconductor can be setup to establish a full duplex RS232-connection

(Universal Asynchronous Receiver/Transmitter, UART 16550D [4]).
Additionally to 544 kBit on-chip-memory the EZ-LAB provides 1
MWord external Random Access Memory (RAM) with each word
being 32 bits wide.

3.2. Controlling PC

The PC is used for two purposes:
e Development of the program that runs the embedded target
e Control the real-time processing during runtime

For the development of the program to run the embedded tar-

get, Analog Devices provides an Integrated Development Environ-
ment (IDE) called VisualDSP++. This software comprises an edi-
tor to type the source code, compiler and linker to generate object-
code for the program and mechanisms to load the object-code of a
program to the DSP and to emulate the downloaded software. The
object-code is loaded to the DSP via a JTAG emulation card that is
plugged into the PC (Mountain-ICE %) on one side and connected
to the DSP on the other side. After downloading the program it
can also be debugged and run instruction after instruction using
this link.
As a second link from the PC to the DSP an RS232 link is con-
nected from the PC to the embedded board. This link is used for
the runtime messaging. On the PC side an example application
lets the user send and receive DSP messages. This application is
based on a simple object oriented software development kit and
can be modified by the students for their project specific function-
ality. Figure 2 illustrates the hardware setup for real-time process-
ing.

4. SOFTWARE ENVIRONMENT FOR STUDENTS

The software environment provided for students to accomplish the
project contains all the programming that is not related to the al-
gorithm. The additional algorithmic related programming compo-
nents are project specific and can easily be integrated into the en-
vironment by the students. The interface to integrate the student’s

! Analog Devices has provided the hardware for the laboratory in the
context of their University Donation Program [1]
2ICE: In Circuit Emulation. [5)

V-1034

Visual DSP++

|
= ' | Audio
_IDE JTA‘G DSP | [AD1819 |1’ ,p
I
I

- Emulator/Simulator

Fig. 2. Setup for real-time processing.

software corresponds to the functionality of the software environ-
ment and can be grouped into two main topics:

e Digital Signal Processing: The main algorithmic function-
ality is the Signal Processing routine that the students im-
plement.

e Messaging: Messages for runtime user interaction are ex-
changed in between DSP and PC. The students have the
possibility to send messages on one side, receive them on
the other side, and incorporate the information obtained into
the main Signal Processing routine.

The two components will be described separately in the following:

4.1. Integration of Algorithm Components

Audio processing works based on a double buffering architecture
and is part of the real-time kernel provided with the software en-
vironment: Input and output buffers for each channel exist twice.
While input samples for each channel are collected in one input
frame and played back from one output frame on an interrupt driven
time basis, the second buffer is used for processing in parallel.

Once the complete input buffer has been filled the buffers are switched.

In the trivial case of a talkthrough implementation the samples in
the second buffer for input are simply copied into the second buffer
for output. After the next buffer switch the values are transmitted
to the DAC and played back.
In order to integrate their own algorithm, the students provide a
function projectStep to process the second input buffer filling the
second output buffer for each channel as depicted in Figure 3.
This function is called whenever a new frame has completely

3 inf0] 3
A5G} [switch }
out[0] i !

[—T— ' Algorithm Related |
3 Real-time Kernel, DSP 'l Functionality, DSP!

(Software Environment) | (Students) |

Fig. 3. Integration of the projectStep function into the software
environment for signal processing.

been collected in one input buffer and the buffers have just been
switched. At the same time a reference to the field that is now
ready for being processed and a reference to the field that is ex-
pected to be filled for output by the processing routine are passed
as functional arguments. A function prototype is provided as a
starting point along with the software environment that implements

a talkthrough functionality. Besides the projectStep function that
will be implemented by the students, there are also initialization
and termination functions that will be called before and after audio
processing in case the algorithm requires initialization/termination.

4.2. Integration of Messaging Components

The messaging functionality is based on an RS232 connection.
Figure 4 demonstrates the principles for runtime messaging on the
DSP side. According to the open characteristic of the applied algo-

Register

O

Function:
initSend

RT-Kernel, DSP Software-Components, DSP
(Software Environement) (Student)

Fig. 4. Principles for sending and receiving runtime messages on
the DSP side.

rithms implemented by the students, the format of the exchanged
messages is also open: In general each message consists of three
parts: The Opcode, the Amount of Parameters and the Parameters
The opcode is a specifier of 32 bit length, the amount of param-
eters is also a 32 bit value while the parameters are sequential 32
bit values, the amount according to the value transmitted as second
argument. The meaning of the opcode and the associated parame-
ters can be freely adapted by the students

For the transmission over the RS232 link the message has to be
divided into bytes on the sender side and composed of received
bytes on the receiver side in the kernel of the software environ-
ment. The connection is full duplex and always between PC and
DSP. Thus the PC and the DSP can both be sender and receiver.
To send and receive messages the students have to undertake the
following steps:

4.2.1. DSP: Sending

In order to send a message from the DSP to the PC, a field contain-
ing the complete message must be prepared and filled. A function
is called that is part of the software environment implementation to
initiate the transfer to the PC. The field is passed as reference and
will be read from the kernel of the software environment automat-
ically. A message that has been completely sent is acknowledged.

4.2.2. DSP: Receiving

For the reception of a message on the DSP side the student speci-
fies an opcode specific function for each opcode used. This func-
tion is registered with the software environment at the beginning
of the processing and internally assigned to the specified opcode.
Whenever a message has been completely received and decoded
by the kernel of the software environment, the registered function
is called to indicate that a new message is available. The message
itself is passed as functional argument so that the parameters can
be read.

V -1035

4.2.3. PC: Sending and Receiving

On the PC side sending and receiving are implemented in the high
level programming language C++. A small application is provided
that demonstrates the usage in the context of a graphical user in-
terface. In order to send a message a function is implemented that
expects opcode and parameters that will be sent to the DSP.

In order to receive a message a function must be provided by
the student. The underlying software environment then calls the
function whenever a message has been completely received, pass-
ing the opcode and parameters of the message as functional pa-
rameters. The students combine the messaging functionality with
a graphical user interface to incorporate user interaction into a
project specific application.

5. EXAMPLES FROM PREVIOUS SEMESTERS

In this section examples will be given from the field of Digital
Audio Signal Processing developed by students during the last
semesters:

5.1. LPC Vocoder

In this project a group of three students developed a vocoder based
on linear prediction coefficients (LPC) as depicted in 5. Linear
prediction coefficients are a representation of the characteristics
of the vocal tract for human speech generation (e.g. [6]). In the
project a tenth-order LP-filter is estimated in an autocorrelation
based approach for short term audio segments of an input signal
x(k) applying the levinson durbin algorithm (LPC-Analysis). The
input segment is afterwards filtered by the LP-Analysis filter to
determine the signals residual signal e(k). From this signal the
power is estimated in a final step. In order to synthesize the anal-
ysed speech, the residual signal is approximated by either sparse
pulses or noise that has the same power as the original residual sig-
nal. Signal é(k). é(k) is then filtered with the LP-Synthesis Filter,
the inverse to the analysis filter to create the artificial speech signal
During a real-time demonstration the LP-order and the excitation
source can be selected using the runtime messaging environment.

1%
' LP-Synthesis i(k)

- [

Filter

Analysis i

Fig. 5. Vocoder algorithm in students project.

5.2. Noise Reduction

During the last semesters various student groups realized a real-
time noise reduction system on the DSP platform. One of these
projects was a superdirective beamformer, which is depicted in
Figure 6 as block diagram. The filtering is performed in the fre-
quency domain as complex multiplication of DFT coefficients with
filter weights W (6, f) depending on a desired spatial angle § and
DFT frequency f. The coefficients are generated using a superdi-
rective design criterion [7] and stored in the DSP on-chip-memory
for a given resolution. During runtime the PC communication in-
terface is used to change the set of coefficients and thus the spa-
tial directivity of the two-microphone array. In order to minimize

Superdirective
Beamformer User

Wy (9’ f)
C Segmentation C
FFT \
enhanced
IFET signal
Wa (8, f Overlap Add
D_» Segmentation| .
FFT

Fig. 6. Superdirective Beamformer realized on DSP platform

distortions caused by cyclic convolution of the frequency domain
filter, the students included an overlap add synthesis.

6. CONCLUSION

In this paper we presented a system that is used for a project ori-
ented laboratory for students called “Digital Signal Processing”.
In that laboratory the students are first introduced to fundamentals
of signal processing and second, a self defined project is planned,
realized and finally presented as a real-time demonstration running
on an embedded board containing a Digital Signal Processor.

In order to free the students from hardware related programming
issues a software environment enables the students to fully focus
on algorithmic programming due to the separation of hardware
and algorithmic components of the real-time program. Example
projects from the past semesters demonstrate the efficiency of the
system to enable the students to implement even complex algo-
rithms including runtime user interaction in a limited timeframe.

7. REFERENCES

[1] Analog Devices Inc., “University Donation Program,”

http://forms.analog.com/Form_Pages/dsp/universityDonation.asp,

2003.

[2] IEEE, “1149.1-2001 IEEE Standard Test Access Port and
Boundary-Scan Architecture 2001,,” Tech. Rep., IEEE, 2001.

[3] ADI DSP Applications John Tomarakos, “Interfacing the
ADSP-21065L SHARC DSP to the ADI819A *AC-97°
Soundport Codec, v2.4a,” 1999.

[4] National Semiconductor, “PC16550D Universal Asyn-
chronous Receiver/Transmitter with FIFOs,” 1995.

[5] White Mountain DSP, “Mountain-ICE Emulator Hardware
Users Guide,” 2000.

[6] N.S.Jayant and P. Noll, Digital Coding of Waveforms, Pren-
tice Hall, 1984.

[71 M. Dorbecker, “Multi-channel algorithms for the enhance-
ment of noisy speech for hearing aids,” Ph.D. Thesis (in Ger-
man), Aachener Beitridge zu digitalen Nachrichtensystemen,
edited by P.Vary, vol. 10 (ISBN 3-86073-439-3), 1998.

V -1036

I 2

