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ABSTRACT 

In a best-effort networking environment, efficient and fair 
congestion control is highly desired for every traffic flow 
to share the bandwidth appropriately. This paper proposes 
a congestion control algorithm for UDP based layered 
video, whose bandwidth resolution in each layer has been 
predefined. This proposed congestion control mechanism 
is an extension of XCP, which is a newly proposed 
protocol believed to be superior to TCP, especially for 
high bandwidth-delay product networks. This paper also 
introduces reserved packet length so that the traffic of 
layered video can share the bandwidth of a network better 
with the consideration of max-min fairness to other traffics. 

1. INTRODUCTION 

To overcome the scalability issues of video streaming 
dissemination over heterogeneously networked receivers, 
the video-content providers would either prepare several 
copies of a video, each at different bit-rate, or have the 
video encoded in layered structure so that the receiver  can 
acquire an appropriate copy based on the network 
condition and play the incoming video in real time. One 
common transport protocol to deliver the contents is RTP 
on top of UDP, which basically provides neither guarantee 
on the quality of service nor friendliness to competing 
traffics. Some would adopt RTCP as a control protocol to 
regulate the data rate [1]. The objective of this paper is to 
define a congestion control mechanism for layered video 
to approach fairness to background traffics.  The fairness 
criterion used here is max-min fairness [2], which assigns 
the largest possible resource to the flow with lowest 
throughput. 

The majority of the internet traffic nowadays is still 
TCP, which follows an end-to-end protocol and adjusts the 
congestion window based on the model with factors such 
as packet loss and round trip time [3]. Several approaches 
in literature have reported that TCP-based congestion 
control has fairness problems and has difficulty in utilizing 
the network resource efficiently in high per-flow 
bandwidth-delay product networks [4]-[6]. For fairness 
issues, one example is that even with two receivers sharing 

the same bottleneck of a network, the steady throughputs 
are different as long as their round trip times are different. 
   Many researches [6]-[9] have worked on improvements 
of TCP congestion control. In the Explicit Congestion 
Notification (ECN) protocol [7], the routers pass forward 
the network condition using a single bit in the IP header to 
notify the presence of congestion. Extended from ECN, 
routers with Explicit Control Protocol (XCP) [6] explicitly 
fill in a few bits of the header with some details of network 
condition to enable senders to quickly and accurately 
adapt to the assigned fair bandwidth using window-based 
rate control. With the verification of ns2 simulations [6], 
XCP proves to be much superior to TCP in terms of 
fairness and convergence time of bandwidth variation, 
both in typical or high-speed (Giga range) networks. 
    Layered video, on the other hand, behaves quite 
differently from the window-based TCP (or XCP) flows. 
Layered video enables a receiver to decode and display a 
subset (usually the accumulative collection) of layered 
video it can receive. The resolution of the changes of data-
rate is determined by the bandwidth of a video layer and 
has a property of quantum change. A bigger number of 
layers generally ensure greater bandwidth resolution. 
Usually, depending on the coding method, there is a trade-
off between the number of layers and the coding efficiency 
of video. Thus, the sender of layered video can not 
transmit whatever the assigned data rate the network is 
telling it to transmit. 

In this paper, we examine the aggregated behavior of 
available bandwidth of a node in XCP. We then extend 
XCP to include rate-based congestion control and further 
propose the reserved bandwidth strategy through reserved 
packet length for layered video to fairly compete the 
traffic. 
  The remaining paper is organized as follow. In Section 2, 
we discuss the congestion control algorithm for rate-based 
traffics as an extension of XCP originally proposed by [6], 
and the modified version for the estimation of spare 
bandwidth. Section 3 proposes reserved packet length for 
layered video. Section 4 presents simulation results, 
followed by the concluding remarks in Section 5. 
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2. SPARE BANDWIDTH ANALYSIS 

With more built in intelligence, today’s routers can take 
advantage of some useful collected information to estimate 
spare bandwidth and thus lead to more reasonable 
bandwidth allocation for flows passing through them. XCP 
[6] suggests a stateless congestion control model for 
window-based rate control. This paper extends their 
concepts to rate-based congestion control and even to 
flows which can only have quantum changes on bandwidth 
such as layered video. 

2.1. Aggregate Feedback in the Node 

XCP introduces a new congestion header which contains 
elements such as congestion window cwnd, round trip time 
rtt, and a feedback field indicating spare bandwidth [6]. 
The sender fills the first two header elements while routers 
dynamically update the (per-packet) feedback field. An 
XCP receiver acts similarly to TCP by sending back 
acknowledgement (ack) packets except it also attaches the 
feedback in the ack packets to the sender. The sender 
updates the congestion window based on the accumulated 
feedback in the ack packet and current cwnd. While the 
throughput of a window-based XCP flow can only be 
implicitly represented by rtt and cwnd, the throughput of a 
rate-based UDP flow can be indicated explicitly in the 
header.  
    As shown in Fig. 1, the simplest way to infer the spare 
bandwidth of a given node would be (Cout - Rin), where Cout

is the outgoing-link capacity and Rin is the incoming rate. 
A more sophisticated definition, called aggregate feedback 

, has been given by [6]: 

.min)(
d

Q
inRoutC ⋅−−⋅= βαϕ   (2.1) 

where  and  are constant parameters; the control period 
d is estimated by the average rtt of all the flows; Qmin is
the minimum queue during the last propagation delay. 

Fig. 1.   Node model.

     When >0,  is divided equally to all the flows. On 
the other hand, it is allocated to flows proportionally to 
their current throughputs when < 0.  The aggregate 
feedback information is an aggregated calculation of 
packets passing through the node. To avoid keeping track 
of the per-flow status in the router, the router can only 
insert traffic information in each packet’s (per-packet) 
feedback field when it passes by, that is why the per-
packet feedback information needs to be derived from the 
aggregate feedback  without the knowledge of flow status. 
The per-packet feedback is expressed as the difference of 
positive feedback and negative feedback, i.e., (pk - nk) [6]: 
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where sk is the packet length (available in the IP header) of 
packet k; rk is the flow throughput specified either 
implicitly in TCP/XCP header or explicitly in the header 
of our layered video packets. Bandwidth shuffling is
introduced to avoid convergence stalling at =0 [10] and h
is the shuffled data rate which is about 10% of the traffic.  
    Once all the per-packet feedbacks are collected by the 
sender for rate-based applications, the total change in the 
throughput of a flow is equal to the sum of the per-packet 
feedbacks it receives for that flow.  

2.2. Modification of Aggregate Feedback Formulation 

Equation (2.1) is an important indicator to spare 
bandwidth. The second term on the right side is required 
so that the queue can be consumed even at Cout = Rin.
Instead of using Qmin, which is more difficult to keep 
track of, in our formulation we choose to use the queue 
length Qend at the end of each period, which is the queue 
amount needed to be consumed in the next duration. This 
selection of queue length provides more realistic 
simulation results in our experiments. The aggregate 
feedback can now be reformulated as: 

.end)(
d

Q
inRoutC βαϕ −−=   (2.3) 

3. RESERVED BANDWIDTH  
FOR LAYERED VIDEO 

In the XCP protocol, when the sender receives the per-
packet feedback from the ack packets, it is supposed to 
update the congestion window right away to reflect its 
share of spare bandwidth along the end-to-end path [6]. 
For layered video, however, the sender cannot increase the 
sending rate before its accumulated per-packet feedback is 
greater than the data rate of the higher layer to be 
subscribed. When the feedback is negative, it needs to 
reduce the sending rate at the resolution of layer 
bandwidth which is no less than the amount suggested by 
the feedback. 

To consolidate the feedback packets, the receiver can 

send back only an ack packet over time duration dt , which 

is chosen to be rtt of current flow. This ack packet carries 
the information of the accumulated per-packet feedback 

)

d tover time
(_ −= knkp

dtsump  and the sender can also update the 

rtt value upon receiving this ack packet. Before the sender 
acquires the first consolidated ack packet so as to 
determine the rtt value, a pre-defined initial value is used. 

V - 982

➡ ➡



Alternatively, the rtt value from the initial control signal 
(TCP packets) to set up this streaming video application 
can be used as the initial rtt value for the UDP session. 

To preserve the spare bandwidth before the sender can 
actually transmit a new layer to the receiver, we introduce 

the concept of reserved packet length ks∆ as the additional 

information placed in the packet header. When routers 
calculate the per-packet feedback for each incoming 
packet as suggested in (2.2) and (2.3), the packet length 

ks is replaced by( )k ks s+ ∆ . The information ks∆  written 

in the header shall be always greater than zero. When the 

calculated ks∆ is less than zero, the sender needs to 

withdraw a layer (or layers) and readjust the reserved 

packet length ks∆ , as discussed in Section 3.2. 

When the sender receives a new accumulated feed-
back _ dtsump in the ack packet, the recursive equation to 

update ks∆ is:

.ksksks δ+∆⇐∆   (3.1) 

From the routers’ point of view, the difference of 

receiving rate introduced by ksδ should be equal to the 

accumulated feedback. Specifically, 

.
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_
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where kN is the packet rate (packet number per second) 

transmitted to the receiver, which can be derived as 
follows: 

.
ks
kr

kN =    (3.3) 

The resulting receiving rate kr
~ of flow k observed in the 

routers, taking into account of the reserved packet length 

ks∆ , is now: 
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With the reserved packet length in the loop, the shared 
spare bandwidth can be actually preserved by recording 

ks∆  in the header instead of being taken away by other 

flows in the next iteration. 
For sake of clearer discussion in the later subsection 

while without loss of generality, we assume every video 
layer has the same bandwidth r and packet size s . We 
also assume that the receiver currently has m video layers. 
It is important to determine when to add a new layer (or 
layers) and to discard a layer (or layers) with respect to the 
changes of reserved packet length s∆ .

3.1. When 0≥∆s

When the reserved bandwidth is enough for at least an 
extra layer: 

,)1()( rmss
s

mr ⋅+≥∆+    (3.5) 
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m

s
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Thus, when mss /≥∆ , the sender can start to transmit 
i additional layers to this receiver. Once the number of 
transmitted layers m is indeed increased, the new reserved 

packet length s∆̂  should also be updated accordingly to 
reflect this increase of layers: 
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Since the new s∆̂  needs to be greater than or equal to 
zero, we can derive number i as the largest integer 
satisfying the following equation. 
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3.2. When  0<∆s

On the other hand, when 0<∆s , which indicates that the 
sender needs to withdraw ( 1)i m≤ − layers from being 

sent to this receiver. As a result, the bandwidth would be 
reduced by ( )r i⋅ . The reduction of bandwidth r i⋅ could 

be more than the indicated feedback by the routers. To 
compensate for this over-reduction, a new reserved packet 

length s∆̂ is derived: 
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Since the new s∆̂ needs to be greater than or equal to 
zero,
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Hence i would be the smallest integer satisfying (3.12). 
Thus, congestion control for layered video can be made to 
be compatible with congestion control in XCP and thus 
create the max-min fairness behavior. 

An alternative way to make use of the preserved 
bandwidth is to put error recovery code for adjacent 
frames or packets as an attachment in the current packet, 
whose length is set to be equal to the reserved packet 
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lengths as shown in (3.9) and (3.12), to be able to recover 
some of the packet errors such as packet loss. 

4. SIMULATIONS 

We use network simulator, ns2 [11], to evaluate the 
performance of the congestion control on layered video 
applications. Pseudo packets for streaming layered video 
are generated at 200 Kbps per layer. Dumb-bell shaped 
network topology (see Fig. 2) is used with bottleneck 
occurring at node 2 to node 3 with capacity 2000 Kbps. 
The queue at each node can store up to 80 packets. 
Senders are placed at node 0, node 1 and node 7, while 
receivers are at either node 5 or node 6. 

Fig. 2.  Network topology. 

In Fig. 3, there are three flows starting at different time 
instances. The solid and dotted lines are the throughputs 
for FTP-XCP traffics. Dash-dotted line is the real 
throughput for layered video. There are transient layer 
changes at around time sec 10, but overall the response 
time is reasonably fast and fair to other traffics which are 
confined to similar congestion control algorithm. As also 
indicated in [6], this congestion control mechanism can 
avoid built-up queue quite efficiently. Fig. 4 is the 
corresponding queue length (in terms of packet number) at 
bottleneck node 2. In Fig. 5, we consider the same 
topology in addition to an intrusive UDP traffic at 1000 
Kbps starting from time sec 7 to sec 15 (UDP throughput 
is not shown in Fig. 5 for better comparison with Fig. 3). 
Fig. 6 is the queue length at node 2. This invading traffic 
doesn’t have any congestion control and thus well-
controlled traffics are starved; nevertheless they still 
converge to their static state quickly. How to deal with the 
ill-mannered traffic is left as future work. 

5. CONCLUSION 

It has been a popular topic to design a congestion control 
mechanism for streaming video data to be fair to the 
competing traffics. In this paper, we generalize the 
window-based congestion control in XCP [6] to include 
rate-based layered video traffic. To counter the abrupt 
changes of staircase-like bandwidth in layered video, 
reserved packet length is introduced. The results show that 
layered video with proposed congestion control 
mechanism can share the bandwidth with other well-
behaved traffics quite well. 
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 Fig. 3.  Flow throughputs.         Fig. 4.  Queue at node 2. 
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