
A MAX-MIN FAIRNESS CONGESTION CONTROL
FOR STREAMING LAYERED VIDEO

Hsu-Feng Hsiao and Jenq-Neng Hwang
Dept. of Electrical Engineering, University of Washington, Seattle WA 98195

{hill, hwang}@ee.washington.edu

ABSTRACT

In a best-effort networking environment, efficient and fair
congestion control is highly desired for every traffic flow
to share the bandwidth appropriately. This paper proposes
a congestion control algorithm for UDP based layered
video, whose bandwidth resolution in each layer has been
predefined. This proposed congestion control mechanism
is an extension of XCP, which is a newly proposed
protocol believed to be superior to TCP, especially for
high bandwidth-delay product networks. This paper also
introduces reserved packet length so that the traffic of
layered video can share the bandwidth of a network better
with the consideration of max-min fairness to other traffics.

1. INTRODUCTION

To overcome the scalability issues of video streaming
dissemination over heterogeneously networked receivers,
the video-content providers would either prepare several
copies of a video, each at different bit-rate, or have the
video encoded in layered structure so that the receiver can
acquire an appropriate copy based on the network
condition and play the incoming video in real time. One
common transport protocol to deliver the contents is RTP
on top of UDP, which basically provides neither guarantee
on the quality of service nor friendliness to competing
traffics. Some would adopt RTCP as a control protocol to
regulate the data rate [1]. The objective of this paper is to
define a congestion control mechanism for layered video
to approach fairness to background traffics. The fairness
criterion used here is max-min fairness [2], which assigns
the largest possible resource to the flow with lowest
throughput.

The majority of the internet traffic nowadays is still
TCP, which follows an end-to-end protocol and adjusts the
congestion window based on the model with factors such
as packet loss and round trip time [3]. Several approaches
in literature have reported that TCP-based congestion
control has fairness problems and has difficulty in utilizing
the network resource efficiently in high per-flow
bandwidth-delay product networks [4]-[6]. For fairness
issues, one example is that even with two receivers sharing

the same bottleneck of a network, the steady throughputs
are different as long as their round trip times are different.
 Many researches [6]-[9] have worked on improvements
of TCP congestion control. In the Explicit Congestion
Notification (ECN) protocol [7], the routers pass forward
the network condition using a single bit in the IP header to
notify the presence of congestion. Extended from ECN,
routers with Explicit Control Protocol (XCP) [6] explicitly
fill in a few bits of the header with some details of network
condition to enable senders to quickly and accurately
adapt to the assigned fair bandwidth using window-based
rate control. With the verification of ns2 simulations [6],
XCP proves to be much superior to TCP in terms of
fairness and convergence time of bandwidth variation,
both in typical or high-speed (Giga range) networks.
 Layered video, on the other hand, behaves quite
differently from the window-based TCP (or XCP) flows.
Layered video enables a receiver to decode and display a
subset (usually the accumulative collection) of layered
video it can receive. The resolution of the changes of data-
rate is determined by the bandwidth of a video layer and
has a property of quantum change. A bigger number of
layers generally ensure greater bandwidth resolution.
Usually, depending on the coding method, there is a trade-
off between the number of layers and the coding efficiency
of video. Thus, the sender of layered video can not
transmit whatever the assigned data rate the network is
telling it to transmit.

In this paper, we examine the aggregated behavior of
available bandwidth of a node in XCP. We then extend
XCP to include rate-based congestion control and further
propose the reserved bandwidth strategy through reserved
packet length for layered video to fairly compete the
traffic.
 The remaining paper is organized as follow. In Section 2,
we discuss the congestion control algorithm for rate-based
traffics as an extension of XCP originally proposed by [6],
and the modified version for the estimation of spare
bandwidth. Section 3 proposes reserved packet length for
layered video. Section 4 presents simulation results,
followed by the concluding remarks in Section 5.

V - 9810-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

2. SPARE BANDWIDTH ANALYSIS

With more built in intelligence, today’s routers can take
advantage of some useful collected information to estimate
spare bandwidth and thus lead to more reasonable
bandwidth allocation for flows passing through them. XCP
[6] suggests a stateless congestion control model for
window-based rate control. This paper extends their
concepts to rate-based congestion control and even to
flows which can only have quantum changes on bandwidth
such as layered video.

2.1. Aggregate Feedback in the Node

XCP introduces a new congestion header which contains
elements such as congestion window cwnd, round trip time
rtt, and a feedback field indicating spare bandwidth [6].
The sender fills the first two header elements while routers
dynamically update the (per-packet) feedback field. An
XCP receiver acts similarly to TCP by sending back
acknowledgement (ack) packets except it also attaches the
feedback in the ack packets to the sender. The sender
updates the congestion window based on the accumulated
feedback in the ack packet and current cwnd. While the
throughput of a window-based XCP flow can only be
implicitly represented by rtt and cwnd, the throughput of a
rate-based UDP flow can be indicated explicitly in the
header.
 As shown in Fig. 1, the simplest way to infer the spare
bandwidth of a given node would be (Cout - Rin), where Cout

is the outgoing-link capacity and Rin is the incoming rate.
A more sophisticated definition, called aggregate feedback

, has been given by [6]:

.min)(
d

Q
inRoutC ⋅−−⋅= βαϕ (2.1)

where and are constant parameters; the control period
d is estimated by the average rtt of all the flows; Qmin is
the minimum queue during the last propagation delay.

Fig. 1. Node model.

 When >0, is divided equally to all the flows. On
the other hand, it is allocated to flows proportionally to
their current throughputs when < 0. The aggregate
feedback information is an aggregated calculation of
packets passing through the node. To avoid keeping track
of the per-flow status in the router, the router can only
insert traffic information in each packet’s (per-packet)
feedback field when it passes by, that is why the per-
packet feedback information needs to be derived from the
aggregate feedback without the knowledge of flow status.
The per-packet feedback is expressed as the difference of
positive feedback and negative feedback, i.e., (pk - nk) [6]:

.
,0)max(-

n where,

;
,0)max(

 where,

+=⋅=

+=⋅=

is

h
ksnkn

ir
is

h
p

kr
ks

pkp

ϕεε

ϕεε
 (2.2)

where sk is the packet length (available in the IP header) of
packet k; rk is the flow throughput specified either
implicitly in TCP/XCP header or explicitly in the header
of our layered video packets. Bandwidth shuffling is
introduced to avoid convergence stalling at =0 [10] and h
is the shuffled data rate which is about 10% of the traffic.
 Once all the per-packet feedbacks are collected by the
sender for rate-based applications, the total change in the
throughput of a flow is equal to the sum of the per-packet
feedbacks it receives for that flow.

2.2. Modification of Aggregate Feedback Formulation

Equation (2.1) is an important indicator to spare
bandwidth. The second term on the right side is required
so that the queue can be consumed even at Cout = Rin.
Instead of using Qmin, which is more difficult to keep
track of, in our formulation we choose to use the queue
length Qend at the end of each period, which is the queue
amount needed to be consumed in the next duration. This
selection of queue length provides more realistic
simulation results in our experiments. The aggregate
feedback can now be reformulated as:

.end)(
d

Q
inRoutC βαϕ −−= (2.3)

3. RESERVED BANDWIDTH
FOR LAYERED VIDEO

In the XCP protocol, when the sender receives the per-
packet feedback from the ack packets, it is supposed to
update the congestion window right away to reflect its
share of spare bandwidth along the end-to-end path [6].
For layered video, however, the sender cannot increase the
sending rate before its accumulated per-packet feedback is
greater than the data rate of the higher layer to be
subscribed. When the feedback is negative, it needs to
reduce the sending rate at the resolution of layer
bandwidth which is no less than the amount suggested by
the feedback.

To consolidate the feedback packets, the receiver can

send back only an ack packet over time duration dt , which

is chosen to be rtt of current flow. This ack packet carries
the information of the accumulated per-packet feedback

)

d tover time
(_ −= knkp

dtsump and the sender can also update the

rtt value upon receiving this ack packet. Before the sender
acquires the first consolidated ack packet so as to
determine the rtt value, a pre-defined initial value is used.

V - 982

➡ ➡

Alternatively, the rtt value from the initial control signal
(TCP packets) to set up this streaming video application
can be used as the initial rtt value for the UDP session.

To preserve the spare bandwidth before the sender can
actually transmit a new layer to the receiver, we introduce

the concept of reserved packet length ks∆ as the additional

information placed in the packet header. When routers
calculate the per-packet feedback for each incoming
packet as suggested in (2.2) and (2.3), the packet length

ks is replaced by()k ks s+ ∆ . The information ks∆ written

in the header shall be always greater than zero. When the

calculated ks∆ is less than zero, the sender needs to

withdraw a layer (or layers) and readjust the reserved

packet length ks∆ , as discussed in Section 3.2.

When the sender receives a new accumulated feed-
back _ dtsump in the ack packet, the recursive equation to

update ks∆ is:

.ksksks δ+∆⇐∆ (3.1)

From the routers’ point of view, the difference of

receiving rate introduced by ksδ should be equal to the

accumulated feedback. Specifically,

.
_

_
kN

dtsump

kskskN
dtsump =⋅= δδ (3.2)

where kN is the packet rate (packet number per second)

transmitted to the receiver, which can be derived as
follows:

.
ks
kr

kN = (3.3)

The resulting receiving rate kr
~ of flow k observed in the

routers, taking into account of the reserved packet length

ks∆ , is now:

).1(~

k

k
kkkkk s

s
rsNrr

∆+⋅=∆⋅+= (3.4)

With the reserved packet length in the loop, the shared
spare bandwidth can be actually preserved by recording

ks∆ in the header instead of being taken away by other

flows in the next iteration.
For sake of clearer discussion in the later subsection

while without loss of generality, we assume every video
layer has the same bandwidth r and packet size s . We
also assume that the receiver currently has m video layers.
It is important to determine when to add a new layer (or
layers) and to discard a layer (or layers) with respect to the
changes of reserved packet length s∆ .

3.1. When 0≥∆s

When the reserved bandwidth is enough for at least an
extra layer:

,)1()(rmss
s

mr ⋅+≥∆+ (3.5)

.
m

s
s ≥∆ (3.6)

Thus, when mss /≥∆ , the sender can start to transmit
i additional layers to this receiver. Once the number of
transmitted layers m is indeed increased, the new reserved

packet length s∆̂ should also be updated accordingly to
reflect this increase of layers:

).ˆ(
)(

)(ss
s

rim
ss

s

mr ∆++=∆+ (3.7)

.ˆ
im

sism
s

+
⋅−∆⋅=∆ (3.8)

Since the new s∆̂ needs to be greater than or equal to
zero, we can derive number i as the largest integer
satisfying the following equation.

.

,0ˆ

s

sm
i

im

sism
s

∆≤

≥
+

⋅−∆⋅=∆
 (3.9)

3.2. When 0<∆s

On the other hand, when 0<∆s , which indicates that the
sender needs to withdraw (1)i m≤ − layers from being

sent to this receiver. As a result, the bandwidth would be
reduced by ()r i⋅ . The reduction of bandwidth r i⋅ could

be more than the indicated feedback by the routers. To
compensate for this over-reduction, a new reserved packet

length s∆̂ is derived:

).ˆ(
)(

)(ss
s

rim
ss

s

mr ∆+−=∆+ (3.10)

.ˆ
im

sism
s

−
⋅+∆⋅=∆ (3.11)

Since the new s∆̂ needs to be greater than or equal to
zero,

.

,0ˆ

s

sm
i

im

sism
s

∆−≥

≥
−

⋅+∆⋅=∆
 (3.12)

Hence i would be the smallest integer satisfying (3.12).
Thus, congestion control for layered video can be made to
be compatible with congestion control in XCP and thus
create the max-min fairness behavior.

An alternative way to make use of the preserved
bandwidth is to put error recovery code for adjacent
frames or packets as an attachment in the current packet,
whose length is set to be equal to the reserved packet

V - 983

➡ ➡

lengths as shown in (3.9) and (3.12), to be able to recover
some of the packet errors such as packet loss.

4. SIMULATIONS

We use network simulator, ns2 [11], to evaluate the
performance of the congestion control on layered video
applications. Pseudo packets for streaming layered video
are generated at 200 Kbps per layer. Dumb-bell shaped
network topology (see Fig. 2) is used with bottleneck
occurring at node 2 to node 3 with capacity 2000 Kbps.
The queue at each node can store up to 80 packets.
Senders are placed at node 0, node 1 and node 7, while
receivers are at either node 5 or node 6.

Fig. 2. Network topology.

In Fig. 3, there are three flows starting at different time
instances. The solid and dotted lines are the throughputs
for FTP-XCP traffics. Dash-dotted line is the real
throughput for layered video. There are transient layer
changes at around time sec 10, but overall the response
time is reasonably fast and fair to other traffics which are
confined to similar congestion control algorithm. As also
indicated in [6], this congestion control mechanism can
avoid built-up queue quite efficiently. Fig. 4 is the
corresponding queue length (in terms of packet number) at
bottleneck node 2. In Fig. 5, we consider the same
topology in addition to an intrusive UDP traffic at 1000
Kbps starting from time sec 7 to sec 15 (UDP throughput
is not shown in Fig. 5 for better comparison with Fig. 3).
Fig. 6 is the queue length at node 2. This invading traffic
doesn’t have any congestion control and thus well-
controlled traffics are starved; nevertheless they still
converge to their static state quickly. How to deal with the
ill-mannered traffic is left as future work.

5. CONCLUSION

It has been a popular topic to design a congestion control
mechanism for streaming video data to be fair to the
competing traffics. In this paper, we generalize the
window-based congestion control in XCP [6] to include
rate-based layered video traffic. To counter the abrupt
changes of staircase-like bandwidth in layered video,
reserved packet length is introduced. The results show that
layered video with proposed congestion control
mechanism can share the bandwidth with other well-
behaved traffics quite well.

0 5 10 15
0

500

1000

1500

2000

2500

time (sec)

th
ro

ug
hp

ut
 (

kb
ps

)

dash-dotted: Layered Video
solid: FTP-XCP
dotted: FTP-XCP

0 5 10 15
0

10

20

30

40

50

60

70

80

time (sec)

pa
ck

e
t n

um
be

r

Number of packet in queue at node2

 Fig. 3. Flow throughputs. Fig. 4. Queue at node 2.

0 5 10 15 20
0

500

1000

1500

2000

2500

time (sec)
th

ro
ug

hp
ut

 (
kb

ps
)

dash-dotted: Layered Video
solid: FTP-XCP
dotted: FTP-XCP

0 5 10 15 20
0

10

20

30

40

50

60

70

80

time (sec)

pa
ck

e
t n

um
be

r

Number of packet in queue at node2

Fig. 5. Flow throughputs. Fig. 6. Queue at node 2.

6. REFERENCES

[1] D. Wu, Y.T. Hou, W. Zhu, Y.Q. Zhang and J.M. Peha,
"Streaming Video over the Internet: Approaches and
Directions," IEEE Trans. Circ. and Syst. for Video Tech.,
vol. 11, no. 3, pp. 282-300, March 2001.

[2] D. Bertsekas and R. Gallager, "Data Networks," Prentice-
Hall, 1987.

[3] W. Stevens, "TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms," RFC2001, Jan
1997.

[4] G. Hasegawa and M. Murata, "Survey on fairness issues in
TCP congestion control mechanisms," IEICE Trans.
Commun., June 2001.

[5] S. Shalunov, "Gigatcp-tcp on gigabit ethernet,"
Internet2/NLANER Joint Tech. Workshop Boulder, July
2002.

[6] D. Katabi, M. Handley, and C. Rohrs, "Congestion Control
for High Bandwidth-Delay Product Networks," ACM
Sigcomm 2002.

[7] S. Floyd "TCP and Explicit Congestion Notification," ACM
Computer Communication Review, 1994.

[8] K. Ramakrishnan, S. Floyd, D. Black "The Addition of
Explicit Congestion Notification (ECN) to IP," RFC 3168,
Sep. 2001.

[9] S. Floyd and V. Jacobson, "Random Early Detection
Gateways for Congestion Avoidance," ACM Trans. On
Networking, Aug. 1993.

[10] D. Katabi, "Decoupling Congestion Control and Bandwidth
Allocation Policy with Application to High Bandwidth-
Delay Product Networks," Ph.D. Dissertation, March 2003.

[11] ns2, http://www.isi.edu/nsnam/ns/.

0

7

1

5

6
2 3 4

V - 984

➡ ➠

