
 IMPLEMENTATION OF A DIGITAL COLOR COPIER
USING A VLIW SIMD ARCHITECTURE

Seokhoon Ju and Wonyong Sung

School of Electrical Engineering
Seoul National University

San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742 Korea
Phone: +82-2-885-7411, Fax: +82-2-882-4656

Email: {jush, wysung}@dsp.snu.ac.kr

ABSTRACT

In this paper, we developed real-time image processing
programs for a digital color copier using TMS320C6416
digital signal processor. The processor is good for real-
time image processing because of multiple and packed-
data processing functional units. However, it needs
careful programming to exploit deep pipelining, multiple
functional units and packed-data instructions. To
improve the unit utilization ratio, we developed a few
techniques, such as pack/unpack reduction, resource
maximization and operation reduction, and multi-pixel
processing. All the critical functions for the
implementation of a digital color copier, which include
shading correction, X-zooming, 2D filtering, and vector
half-toning, are implemented. It is shown that a 720 MHz
C6416 CPU can perform all the real-time processing
needed for a 20 PPM (page per minute) 600 dpi A4 size
color copier. We used C programming with intrinsic
functions and linear assembly programming followed by
the assembly optimizer.

1. INTRODUCTION

Digital color copiers are becoming a commercial product.
However, real-time processing of color image requires
more than 3 times of arithmetic and memory access
operations when compared to black and white (B/W)
processing. Currently, many digital copiers are
implemented using hardwired image processing circuits
because of the demand for high throughput. However, the
hardware based systems are disadvantageous for
implementing complex functions, such as editing and
compression. The Texas Instruments’ digital signal
processor TMS320C6416 can achieve a very high
processing rate due to its VLIW (Very Long Instruction
Word) architecture and packed data processing support
[1]. The CPU can process up to 8 instructions at each
clock because of its pipelined and VLIW characteristics.
It can also process up to four pixels of 8-bit data at each

instruction because of the packed data processing
capability. The architecture of the TMS320C6416 is
shown in Fig. 1.

Instruction Decode
Instruction Dispatch

Instruction Fetch

C
ontroller

C64x DSP Core

L1 Program Cache
Direct-mapped 16KB

L1 Data Cache
2-Way Set-associative 16KB

L2 M
em

ory
1M

B

Peripherals

A Register File
(A31-A16, A15-A0)

.L1 .S1 .M1 .D1

Data Path A
B Register File

(B31-B16, B15-B0)

.D2 .M2 .S2 .L2

Data Path B

Fig.1. TMS320C6416 architecture

The prototype digital copier developed performs the basic
image processing steps depicted in Fig. 2 [2].

Fig.2. Image processing flow of a digital color copier

Table 1 shows the number of arithmetic operations per
color pixel for each basic image processing step.

Table 1. Number of arithmetic operations per color pixel
Shading

correction
2D FIR

filter(7x5) X-Zooming Vector error
diffusion

Multiply 3 105 6 36
Addition 0 102 3 39

As shown in this table, 2D FIR filtering and vector half-
toning are the most demanding blocks for the real-time
implementation. This also implies that a 20 PPM color
copier requires the computing capability of approximately

V - 9330-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

3 GOPS (Giga Operations Per Second) even if all the
load/store and control overheads are neglected. Thus, a
real-time implementation is not possible without utilizing
the VLIW and SIMD architectural characteristics.
As for the software development environments, we used
both C program with intrinsic functions and linear
assembly programming followed by the assembly
optimizer [3]. Manual parallel assembly programming is
avoided because of programming difficulties and lack of
portability.

2. OPTIMIZATION METHODS

We employed a few optimization techniques that can be
utilized for the implementation of other image processing
algorithms using parallel and pipelined architectures.

3.1. Pack/Unpack Reduction

Color pixels are usually represented by three separate data,
such as R, G, B or C, M, Y. However, most of the image
processing steps for a color copier are conducted for each
color independently, except for the vector half-toning.
Thus, the color data format shown in Fig. 3-(a) incurs
much pack/unpack operations. In this work, the color
data format is stored as shown in Fig. 3-(b). The
employed color format is also important for efficient
SIMD processing because a SIMD operation can process
four pixels, not three, at a time. Note that the color
format shown here is different from the color image
sampling point structure.

G B G B G B
G B G B G B
G B G B G B
G B G B G B
G B G B G B
G B G B G B

B B B B B B B B B

B B B B B B B B B

(a) (b)
Fig.3. Color data storage format

3.2. Resource Maximization and Operation Reduction

Many of the image processing algorithms, such as 2-D
filtering and shading correction, contain a good number of
parallel operations. In this case, the maximum throughput
is determined by the ratio of the number of functional
units and the number of arithmetic operations. Thus, one
of the most important things is to reduce the number of
operations, which can be either arithmetic or load/store
operations. For the case of an FIR filtering, a
conventional approach is to use the symmetrical
characteristics as shown in Fig. 4. But, this structure
increases the number of pack/unpack operations since the
distance of the pixels to be added is not a constant.

Fig.4. A linear phase FIR filter

In this work, the vertical symmetry of filter coefficients is
utilized as shown in Fig. 5. The 1-D filtered results are
not only used for the current pixel but also stored for the
pixel several lines later. This approach halves the number
of arithmetic operations. Assume that a filter kernel of
7x5 is employed, where 7 is the tap length in the
horizontal direction. Then, for example, the fifth line of
input data is multiplied with the same coefficients for the
calculation of line number 3 and line number 7. Note that
this does not require pack/unpack operations although this
increases the number of store operations slightly.

A*f1 B*f2 C*f1

D*f4 E*f5 F*f4

G*f1 H*f2 I*f1

J*f4 K*f5 L*f4

M*f1 N*f2 O*f1

)121(
)454(

)121('

fIfHfG

fFfEfD
fCfBfAE

)121(
)454(

)121('

fOfNfM

fLfKfJ
fIfHfGK

Fig.5. Use of vertical symmetry

For the case of shading correction, the saturated arithmetic
operation is conducted not only by using SPACKU4 but
also using MIN2 and PACKU4 operations. Although the
latter instructions are not efficient, the SPACKU4 is only
supported by the .S functional unit. Thus, it is better to
use MIN2 and PACKU4 to utilize, otherwise, idle
functional units.

3.3. Parallelism Increase Using Multi-Pixel Processing

Although C64x DSP can execute many operations
simultaneously, it is not always possible to utilize most of
them. A signal flow for an algorithm can be classified as
shown in Fig. 6. Figure 6-(a) shows the case when there
is no recursive or feedback loop in the algorithm as can be
found in 2-D FIR filtering and X-zooming. Figure 6-(b)
shows the case where there is a locally recursive
dependency loop. In this case, it is possible to achieve a
high utilization ratio by inserting D, E, and F operations at
the same pipelining. However, in this case, the throughput
is determined by the computational complexity in the
recursive part, E and F. Thus, it is important that E and F
do not require much computation. Figure 6-(c) shows the
case when an algorithm requires a very long step of

V - 934

➡ ➡

recursive processing as can be found in the error diffusion
process. In this case, the utilization ratio cannot be high
unless some parallelization algorithms are employed. But,
the parallelization of an algorithm requires a significant
overhead in most cases. The approach that we employed
is the skewed multi-line processing [4]. It has been
shown that two pixels at different lines with some skew in
the horizontal direction can have no dependency relation
in the error diffusion process. In this case, the signal
flow is transformed as shown in Fig. 6-(d).

G2

H2

I2

A

B

C

D

E

F

Flow of
Data

Flow of
Program

(a) (b)

G

H

I

(c)

G1

H1

I1

(d)

 Fig.6. Data flow graphs for image processing

4. IMPLEMENTATION RESULTS

4.1 Shading Correction

Shading correction compensates for the non-uniform light
intensity using a multiplication with a pre-stored gain
value for each pixel. We not only use SPACKU4 and
SHRU2 instructions in .S units but also MIN2 and
PACKU4 instructions in .L units. A multiple number of
pixels are processed at a time to utilize both SIMD
arithmetic and multiple functional units. Table 2 shows
the number of cycles for each pixel and the average unit
utilization ratio in terms of the number of pixels and when
utilizing MIN2 and PACKU4 instructions. Note that the
number of instructions to execute for each pixel is not the
same, thus a code having a smaller unit utilization ratio
can be executed faster at sometimes.

Table 2. Optimization results of shading correction
Using Only SPACKU4 Using SPACKU4,

MIN2, PACKU4No
SIMD 2 pixel 4 pixel 8 pixel 8 pixel

Cycles/pixel 14.09 2.52 1.41 1.40 1.21
Avg. unit
utilization 1.71 4.28 4.3 3.4 5.63

4.2. 2D FIR Filtering

2D FIR filtering requires a large number of
multiplications and additions as shown in Table 1. We
assumed a linear phase filtering, which has symmetric
coefficients, but do not assume any other constraints on
the filter coefficients because the coefficients should be
downloadable. As explained in Section 3.2, it is possible
to halve the number of arithmetic operations by saving the

1-D filtered results and reusing it later. However, the
implementation results show that the load/store operations
limit the performance as shown in Table 3. In order to
reduce the number of load/store operations, two adjacent
pixels are processed at a time. Although the two pixel
processing does not show the performance improvement
when using C programming with intrinsic functions, it
shows a better result when using linear assembly
programming followed by the assembly optimizer. The
results are summarized in Table 3.

Table 3. Implementation results for 2-D filtering
1 Pixel 2 Pixel 2 Pixel

(Linear ASM)
cycles/pixel 14.16 15.30 11.39

Avg. unit utilization 7.5 6.78 8
Cycles of loop 4 x 3 4.5 x 3 3 x 3

4. 3. X-zooming

A digital copier independently magnifies or reduces the
original image in X-Y directions. The X-zoom is the
scaling of the original image along a scanned line and is
performed by digital signal processing, while the Y-zoom
is conducted by changing the scanning speed. We
employed the interpolation based method for X-zoom.
Since a wide range of zooming ratio is needed, it is
necessary to find out the value of the hypothetical pixel
point. Note that this location is pre-computed according
to the zooming ratio to reduce the real-time processing
overhead [2]. The problem of X-zooming is that it
requires many unaligned load operations. Note that three
tables are needed, one stores the index values of 16 bit,
and the other two keep the ratio values of 8 bit. Thus, the
overhead of table load can be much reduced by merging
these tables, although this require unpack after the load.
The implemented results are shown in Table 4, where the
linear assembly programming followed by the assembly
optimizer produces a much better results than the
compiled one.

Table 4. Optimization results of X-Zooming
1 pixel 2 pixel 2 pixel

(Linear ASM)
Cycles/pixel 6.33 12.45 4.42

Avg. unit utilization 4 1.43 4.38

4. 4. Vector Half-toning Process

In this paper, the vector error diffusion (VED) algorithm
is selected for color printing for better quality [5]. Note
that the vector error diffusion utilizes all the colors for
faithful half-toning, but as a result, it requires 9 times of
arithmetic operations assuming the same filter kernel
when compared to monotone processing. Figure 7 shows
the overall vector error diffusion process.

V - 935

➡ ➡

Neighbor`s
Quantization Error

Packing

Calculate
Total Neighbor`s

Quan. Error

Subtract

Load
Quantizing Pixel

Table-based
Multi-level Quantizer

Store
Quantized Pixel

Calculate
Quantization Error

Fig.7. Data flow graph of vector error diffusion

Since the error diffusion process includes a quantization
step inside of the feedback loop, it is difficult to increase
the utilization ratio by processing multiple pixels. Even if
C64x equips a sufficient number of functional units, the
number of minimum cycles is 15 per pixel because of the
long recursive loop. Although we can process three
colors simultaneously, it is not efficient because C64x has
only two identical data-paths.
In order to increase the number of parallelism, a skewed
parallel processing algorithm is employed [4]. A table
based quantization method is employed for multi-level
quantization [6]. The performance is measured when the
number of lines that are processed simultaneously is
increased from one to three. As shown in Table 5, the
performance is the best when processing two lines
simultaneously. Although the parallelism increases as the
number of lines to process rises, but this also demands
more registers.

A1

A2 B2

A3 B3

A4 B4

B1

Fig.8. Skewing method for multi-pixel processing

Table 5. Optimization results of vector error diffusion
1 line

(intrinsic)
1 line

(linear ASM)
2 line

(linear ASM)
3 line

(linear ASM)
cycles/pixel 19.27 19.16 10.29 10.53
Avg. unit
utilization 2.95 2.95 5.1 4.9

5. CONCLUDING REMARKS

We developed a few methods for the efficient
implementation of a digital color copier using TI’s
TMS320C6416 DSP processor. The developed code
requires about 24 cycles for each color pixel, which
translates that a 720 MHz C6416 CPU can perform all the
real-time processing needed for a 20 PPM, 600 dpi, A4
size color copier. The number of required cycles for the
color processing is not much increased when compared to

the B/W copier implementation partly due to the
improvement of the optimization methods [7]. Since the
programmable DSP based architecture can support not
only real-time image processing but also complex off-line
functions, such as image compression, the DSP-based
hardware and programs seem quite attractive for the
implementation of next generation multi-function digital
color copiers.

Table 6. Summary of the implementation
Shading

Correction
2D FIR

filter
X-

Zooming
Vector Error

Diffusion Total

Cycles/pixel
in loop 1 9 4 10 24

Average
unit utilization

in loop
5.63 8.00 4.38 5.10

6. ACKNOWLEDGMENTS

This study was supported by the Brain Korea 21 Project
(0019-19990027) and the National Research Laboratory
program (2000-X-7155) supported by the Ministry of
Science and Technology in KOREA.

7. REFERENCES

[1] TMS320C6414, TMS320C6415, TMS320C6416 Fixed-Point
Digital Signal Processors, Literature Num. SPRS146G, Texas
Instruments, Mar. 2003.

[2] J. W. Ahn and W. Sung, “Pentium-MMX Based
Implementation of a Digital Copier,” Proc. 1998 IEEE
Workshop on Signal Processing Systems, pp. 142-151, Oct. 1998.

[3] TMS320C6000 Programmer’s Guide, Literature Num.
SPRU198G, Texas Instruments, Aug. 2002.

[4] Jae-woo Ahn and Wonyong Sung, “Multimedia processor-
based implementation of an error-diffusion halftoning algorithm
exploiting subword parallelism,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 16, no. 2, pp. 129-138, Feb.
2001.

[5] N. Damera-Venkata and B.L. Evans, “Design and analysis of
vector color error diffusion halftoning systems, ” IEEE Trans. on
Image Processing, vol. 10, pp. 1552-1565, Oct. 2001.

[6] Seokhoon Ju and Wonyong Sung, “VLIW SIMD architecture
based implementation of a multi-level dot diffusion halftoning,”
Proc. 2003 IEEE Workshop on Signal Processing Systems, pp.
281-285, Aug. 2003.

[7] Taeksang Hwang and Wonyong Sung, “Implementation of a
digital copier using TMS320C6414 VLIW DSP processor,”
Proc. 2003 IEEE International Conference on Acoustics, Speech
and Signal Processing Systems, vol. 2, pp.621-624, Apr. 2003.

V - 936

➡ ➠

