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ABSTRACT
The effects of image and video compression on face

recognition in the still-to-video setting are studied in this
paper. We use the probabilistic framework described in [8],
which solves tracking and recognition problems simulta-
neously via sequential importance sampling (SIS)[2]. To
account for the illumination and pose variations in test se-
quences, intrapersonal space (IPS) [5] is constructed from
examplar views and used to calculate the likelihood density.
Both the gallery images and probe videos are compressed
and several experiments are run to study their effects on
the recognition rate. Some useful conclusions are drawn
from the analysis of the experimental results, which will be
helpful for future research on the interaction between recog-
nition and compression. Meanwhile, the experiments also
demonstrate the robustness of the proposed methods.

1. INTRODUCTION

As the applications of face recognition system are becom-
ing more pervasive, video-based recognition methods are
receiving greater attention in recent years [7]. Most of them
deal with the still-to-video setting, meaning still images are
used as gallery and video segments are used as probes. Re-
cently Zhou et. al. [8] proposed a probabilistic framework
to solve the problem of simultaneous tracking and recogni-
tion of human faces in video.

While researchers have studied the effects of illumina-
tion, pose and expression variations on the recognition rate,
to our knowledge, little has been done to investigate the ef-
fect of compression in the still-to-video setting. Since most
of the videos have to be stored after compression, analysis
of the effect of compression becomes very necessary.

Some work has been done in the literature regarding
the effects of compression in the still-to-still setting [1], in
which case both the gallery and probe sets contain only still
images. In FRVT 2000 [1], the effects of JPEG compres-
sion on face recognition have been tested and only com-
pression over the probe set has been considered. It was
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concluded that the recognition rate does not necessarily go
down with increasing compression ratio. In their experi-
ment, the recognition rate goes up slightly for compression
ratios 10:1 and 20:1. For compression ratio 40:1, the recog-
nition rate goes below that of the uncompressed test.

In this paper, we consider the still-to-video scenario.
Unlike FRVT 2000 , we will compress both the gallery and
the probe sets to give a more comprehensive study. The
rest of the paper is organized as follows. In section 2 we
summarize the two state-of-art methods in face recognition
literature which are used in our experiments. In section 3
we describe the experimental setting. Section 4 presents the
experimental results and analysis. Section 5 concludes the
paper and discusses future research directions.

2. THEORETICAL BACKGROUND

2.1. Probabilistic Framework

Before SIS was used in face recognition, most video-based
methods relied on a good selection of frames and do not
fully exploit the temporal information in the probe video.
Zhou et. al.’s method [8] successfully used SIS to propagate
the posterior density of the identity and motion variables to
solve the tracking and recognition problems simultaneously.
We choose to use this scheme in our experiments.

To be more specific, a time series state space model is
used. The state variable � � � � 
 � 
 � � � includes an identity
variable 
 � and a motion parameters � � , which is assumed
to be a 2D affine transformation. The system equation can
be written as


 � � 
 � � � 
 � � � � � � � � � � 
 �  " 
 (1)

where we assume that motion variable follows a Markov
process with � � as a white Gaussian noise process.

A simple formulation of the observation equation can be
characterized as $ %

& ( * � + � - / & � 0 � 
 (2)

where, * � is the observation, and

$
is an affine transform

to normalize the image to the same size of the gallery im-
ages. � - � 
 2 2 2 
 - 3 � is the gallery set with one template per
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person and the total number of people is N, and � � is obser-
vation noise. This equation is used to determine the likeli-
hood function � � � � � � � 	 � � 
 .

The recognition is based on a Maximum A Posteriori
(MAP) decision rule, namely finding � � that maximizes� � � � � � � � � 
 . SIS is used to approximate and propagate the
posterior probability � � � � 	 � � � � � � � 
 , and marginalization over
variable � � is carried out before applying the recognition
rule. Detailed descriptions can be found in [8].

A simple way to define the likelihood function from (2)
is to set it as a ’truncated’ Laplacian:

� � � � � � � 	 � � 
 � � 	 � � 	 � � 	 � � �
� �

� � � � 
 � � � � � � � � 	 � � 
 	 (3)

where � � 	 � � are some parameters that can be chosen heuris-
tically and the truncated Laplacian function is defined as

� 	 � � 	 � � 	 � � � � � 	 � 
 � � � � � � � � � � � � � 
 	 � � � ! � �� � � � � � � � � 
 	 $ � % � & ( � ) �
(4)

The drawback of this simple model is that it fails to cap-
ture the variations of the facial imagery due to different vari-
ations such as illumination and pose. An updated model is
explained in the next subsection.

2.2. Intra-Personal Space and Probabilistic PCA

We applied the methods proposed by Modghaddam [5] to
model the variations in illumination and pose etc. in our ex-
periments. The Intra-Personal Space refers to the manifold
containing the variations of face images belonging to one
person. Probabilistic PCA [6] (PPCA) is used in our ex-
periment to construct a probabilistic subspace density upon
IPS.

To build IPS, five facial images are cropped from the
video for each person. There is no overlap between images
from test sequences and the frames from which training face
images are cropped. Examples of enlarged gallery are show
in Fig. 2.

PPCA assumes that an observation � is generated as fol-
lows,

� �  ! + - ! � 	 (5)

where we have the sample vector � , the hidden variable- . 0 � 1 	 � 
 , the sample mean  , the loading matrix +
and the measurement noise � . 0 � 1 	 � 3 � 
 . In our problem,
we assume that the intrapersonal variations of a face image
have the distribution as � in (5). So correspondingly, � is� �

� � � � 
 and  is � � � as in (2). From the training images, we
can estimate + and � 3 using a maximum-likelihood (ML)
estimating procedure. In practice, we use an approximation
to the optimal solution, which will choose + to be the prop-
erly weighted principle eigen-vectors of the scatter matrix

of the training samples and � 3 the average of the remain-
ing eigenvalues [6][5]. This provides us the probability of a
sample � lying in that subspace as

4 6 � � 
 � � 8 � � � � � "9
:; <

= �
- 3

<
> < 
 � � � � � @ 39 A 
 	 (6)

where � is the normalizing constant,
> <

is the eigenvalue of
the scatter matrix in the descending order,

A
is the average of

the remaining � � D eigenvalues, -
<
is � -th component of the

representation of � in the D dimensional principle subspace,
and @ is the representation error.

Thus the likelihood function under this formulation is

� � � � � � � 	 � � 
 � 4 6 �
� �

� � � � 
 � � � � 
 	 (7)

where in this case � � � will be the mean of the samples cor-
responding to class � � .

3. EXPERIMENTAL SETTING

We used the outdoor NIST data set as our test sequences.
It contains a database of thirty persons and originally each
person has one face image in the gallery. We extended the
gallery as discussed in the last section to model the varia-
tions of the face image and construct an IPS. The sample
gallery is shown in Fig. 1 and Fig. 2. The sample of com-
pressed probe video is shown in Fig. 4. This data set is
particularly suitable for evaluating the effects of compres-
sion because of the difficulty of outdoor sequences and the
smaller size of face region.

Fig. 1. Original gallery of face images and its compressed
version. The image size is 48 by 42. The compression arti-
facts are quite obvious.

In order to test the effects of compression, both the gallery
and the probe video are compressed and several tests are run
to compute the recognition rates in different cases. For the
gallery set, we have two cases:
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Fig. 2. Extended gallery and its compressed version. These
images are cropped from the video frames ensuring no over-
lap with the test sequences used in recognition.

Fig. 3. The eigenvectors of the Intra-Personal Space. The
first row is the first ten principle eigenvector for IPS con-
structed under UG. The second row is those constructed un-
der CG. The blocking artifacts are also reflected.

1. Uncompressed gallery(UG).

2. Compressed gallery(CG). The images are compressed
by choosing JPEG quality 5 with the ultimate com-
pression factor as 1:8. Note that this compression is
done over the already down-sampled face image.

For the probe video, the MPEG-2 [4] standard is used to
compress the video into different levels [3]. We consider
three cases:

1. (UV) Probe video set is uncompressed.

2. (MV) Probe video set is moderately compressed. It
is illustrated in Fig. 4. The approximate frame rate is
25KB/s for gray images of size 720x480. The default
quantization matrix in MPEG2 is used for compres-
sion. The resulting video does not have much visual
difference compared to the original video.

3. (HV) Probe video set is highly compressed. The ap-
proximate frame rate is 5KB/s for gray images of size
720x480. The target frame rate is set to be very low.
The resulting video in size is about 1/5 of MV and has
apparent blur and blocking artifacts. It is illustrated in
Fig. 5. The video samples are available at
http://www.cfar.umd.edu/ � lij .

In total, we have 6 different recognition scenarios.

Fig. 4. Sample of the moderately compressed probe video.
Tracking results under CG are illustrated by the white rect-
angle.

Fig. 5. Sample of highly compressed probe video with
tracking results under CG. Size is about 1/5 of the mod-
erately compressed video file, at a frame rate of 5KB/s.

4. EXPERIMENTAL RESULTS AND ANALYSIS

We have tested the tracking and recognition algorithm as
described in Section 2 for different degrees of compression.
The first ten eigenvectors for IPS constructed under UG and
CG are illustrated in Fig. 3. The blocking artifacts under CG
are reflected in those eigen-vectors. The tracking results un-
der MV and HV are shown in Fig. 4 and 5. The Cumulative
Match Curves (CMC)[7] are shown in Fig. 6. Comparison
under each different settings has been illustrated in the fig-
ure. The recognition rates based on both the top one match
and top three matches are shown in Fig. 7.

From the recognition results, we observe the following:

1. Similar to the conclusion in FRVT 2000 [1], which
only considered the still-to-still setting, the recogni-
tion rate does not necessarily go down with increasing
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compression in the still-to-video setting either. The
recognition rates based on the top one match for MV
are higher than those for UV when using either UG
or CG. It indicates that moderate compression, which
can smooth the noise, is helpful for recognition.

2. Using very poor quality gallery set leads to a drop in
the recognition rate and its effect on UV is less than
its effect on the compressed video. The visual quality
of the compressed gallery used in our experiment ap-
parently degrades to a very noticeable level(see Fig.
1 and 2). The recognition results under CG, com-
pared with those under UG, drop in all instances as
shown in Fig. 6 and 7 compared with UG. The per-
centage drops for the top one match for UV, MV and
HV because of CG are 3.4, 6.6 and 6.7 respectively.
We see that the compressed gallery has less effect on
UV than on MV or HV in our experiment. It indi-
cates that video compression and image compression
may not necessarily retain the same information for
classification even if they have similar compression
factor. That will lead us to use an alternate approach
to model the variation of compression in video in-
stead of merely learning it from compressed still im-
age gallery.

3. Recognition for HV drops compared to MV. It indi-
cates that for a recognition system using the still-to-
video setting, moderate compression without signifi-
cant degradation of image quality will be appropriate
if we need to compress the video.

4. The closeness of all the curves in Fig. 6 shows that
the methods we use are fairly robust to compression
in all different cases.

5. CONCLUSION AND FUTURE PLAN

The effects of compression of both still images (used in the
gallery) and videos (used in the probe sets) are tested by
running several experiments under the still-to-video setting.
Our future plan will consider utilizing the information in-
herent in the compressed imagery, such as motion vectors,
to make tracking and recognition more efficient and accu-
rate. Larger data set will also be tested to obtain a more
general analysis.
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Fig. 6. Comparison of the CMC under different cases.

Fig. 7. A summary of recognition rates.
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