
AN APPLICATION FOR INTERACTIVE VIDEO ABSTRACTION

Sangkeun Lee, Monson H. Hayes

Georgia Institute of Techonology, Center for Signal and Image Processing,
Atlanta, GA 30325, U.S.A

gte392q@prism.gatech.edu, mhh3@ece.gatech.edu

ABSTRACT
This paper proposes a novel system that can automatically cre-

ate an optimal and nonrepetitive summarization and support dif-

ferent user requirements for video browsing and content overview

by outputting both the optimal set of key frames and a summarized

version of the original video with the user-specified time length.

Comparing our approach to video abstraction with another algo-

rithm, we demonstrate that our approach is fast and produces an

effective video summary.

1. INTRODUCTION

Recently, we have witnessed a rapid increase in the production,

transmission, and storage of multimedia information. Of all the

media types, video is the most challenging as it combines all other

media information into a single data stream. However, efficient ac-

cess to video is not an easy task due to its length and unstructured

format. In order to efficiently search a vast video library or digital

archive to retrieve specific shots, scenes, or entire movies, it is im-

portant to be able to produce a summary of a video, either in terms

of a set of descriptive frames or a set of short video clips. Pro-

ducing such a summary is generically referred to as video abstrac-

tion. A video abstraction is a compact representation of a video

sequence. There are two general types of video abstractions: video

summarization and video skimming [1]. Video summarization [2],

sometimes referred to as “still-image abstraction”, involves the

creation of a small collection of representative images that are ex-

tracted or generated from the underlying video sequence. Once

the video summary has been created, it may be easily displayed

or presented to the user since it consists simply of a storyboard or

gallery of images. These images may be arranged in a number of

ways. The second form of video abstraction is called video skim-

ming, which is also referred to as “moving-image abstraction”. In

video skimming [7][8], a collection of image sequences are ex-

tracted from the video along with the corresponding audio tracks.

Although generally taking more consuming than video summa-

rization, video skimming has the advantage of using audio tracks,

which may contain important information, such as in education

and training videos. Video skimming also has advantages during

play back, since it is usually more natural and interesting for users

to watch a trailer than to watch a slide show and, in many cases,

the motion that is displayed is information-bearing.

We have developed a video summarization system that is de-

signed to quickly and efficiently produce a hierarchical visual dis-

play of key frames that are extracted from the video. In this paper,

we describe the last building block of the proposed video abstrac-

tion system. The focus is on the overall speed of summary gener-

ation.

This paper is organized as follows. In Section 2, we summa-

rize our system for video summarization. In Section 3, the pro-

posed structure for video abstraction is presented. Section 4 illus-

trates how to make a video abstraction with user interaction and

interface. To evaluate the overall abstraction system, this work is

compared with another algorithm based on the speed of summariz-

ing a video in Section 5, and in Section 6 we provide a summary

of our paper.

BROWSING

VIDEO SHOTS

PARSING A VIDEO

PRIORITIES

KEY FRAMES

CLUSTERS

VIDEO
ABSTRACTION

... ...

FILTERING

Fig. 1. Procedures for multi-level video abstraction and browsing.

2. VIDEO ABSTRACTION SYSTEM

The proposed system itself is composed of a number of building

blocks. The building blocks indicate the algorithms developed for

quickly summarizing a video with little redundancy. This system

consists of two main parts: video analysis and video abstraction.

In the video analysis part, the key-frame extraction module be-

gins by detecting shot boundaries [3]. Each shot is analyzed for

camera movement [4] and divided, if appropriate, into subshots.

Key frames are then selected according to the complexity of the

shots [11]. In the video abstraction part, the key frames that have

been extracted in the video analysis part are used as the input to

a fast clustering algorithm [11]. Here, the goal is to cluster sim-

ilar key frames so that a more compact summary may be created

for high-level summarization. Finally, a non-repetitive summary

of the video content from the clustered key frames is created. This

summarization is designed to support different user requirements

for video browsing and content overview by outputting both the

set of key frames and a summarized version of the original video

V - 9050-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

using a multi-resolution structure. In addition, a simple and ef-

ficient algorithm for human face detection [10] has been used to

help users with more content-based searching. The procedures of

summarizing and browsing contents of a video is illustrated in Fig-

ure 1. The solid arrow indicates the direction of abstraction, while

the dotted arrow indicates the direction of browsing contents of a

video.

3. MULTI-RESOLUTION SUMMARIES

The video abstraction architecture is shown in Figure 2 and con-

sists of three categories: media, user, and database. The media

component includes the video sequences, which are manually clas-

sified according to their genre. The user component indicates the

activity of users searching and selecting relevant video on a local

workstation or through the Internet. In the database component, it

is assumed that the video key frames are clustered and have priori-

ties assigned to them according to different characteristics such as

length of a shot, the number of key frames of the shot, human pres-

ence, and camera motions. Let Ω be a set of the refined key frames

Server (database)

N
etw

ork
User

(PDA,
Mobile Phone,

PC, etc)

Classification

Level 1

Level L

Level k

Movie DramaSports

Movie #1 Movie #n

Video Sequences

1

�

l

�

L

�

•
•
•

•
•
•

•
•
•

Etc.

•••

User

Media

Fig. 2. Overall structure of the abstraction system.

in a video arranged with temporal order, and ΩL = [f1, · · ·, fp]
be a set of p key frames. L is the number of summary levels, and

fx, which is the temporal position of the original video, is the xth

key frame. At any level, the summarization can be represented as

Ωk = [f1, · · ·, fq], where 1 ≤ k ≤ L and 1 ≤ q ≤ p. (1)

The following equation defines the number of key frames to be

selected at level k:

Nk = �p × k
L
�, (2)

where 1 < k ≤ L, and �·� is the rounding operator. For the first

level, this system selects the most static key frame to show users

the representative image at the beginning of their video browsing.

For level k, the system picks Nk key frames according to their

content activities but produces a summarization according to their

temporal orders. Finally, level L must have all of the key frames,

i.e. ΩL = Ω. The system also provides a summarized video clip,

which can be available at each level, for the user’s convenience.

The short video clip can be understood as a temporal extension of

the key frames at each representation level. Each shot or subshot,

to which at least one extracted key frame belongs, is taken as a

key video segment. These key segments are then concatenated to

form the short video clip. It is preferable to use entire shots or

subshots for making a clip due to their complete contexts. Such

completeness makes the short video clip understandable. An al-

ternative to this is to use only extracted key frames, and assign an

equal or different time length depending on the duration of their

shot or subshot in an original video. However, the probability of

having a complete context is considerably lower in this case even

though it is simple way. The following section describes the pro-

cedure to select the representative images at each level from user

interactions.

(a) K(0, 0)=14 (b) K(1, 0)=94 (c) K(2, 0)=142

(d) K(2, 1)=251 (e) K(2, 2)=270 (f) K(3, 0)=325

(g) K(4, 0)=355 (h) K(5, 0)=385 (i) K(6, 0)=446

Fig. 3. An example of refined key frames for a commercial film.

4. USER INTERACTION/SYSTEM INTERFACE

In order to show how users (clients) interact with the database

server to find their intended information, we use the result clus-

tered key frames in Figure 3 for a commercial film (CF) sequence.

Let K(m, n) be the temporal position of the refined nth key frame

at the mth shot. The characteristic of this sequence has two sub-

shots of a zoom-in and a zoom-out camera operation, sequentially,

at the third shot K(2, 0). It is assumed that the characteristics of

the key frames are given as shown in Table 1. In practice, the

Table 1. Characteristics of the refined key frames.

Frame f1 f2 f3 f4 f5 f6 f7 f8 f9
Human Low No Low No Low High No High No
Motion Low Low High High High Low Low Low Low

characteristics are assigned numerical values from the proposed

system.

If a client wants to have the information according to the de-

gree of no-motion and human content in a video (in this exam-

ple, the human content is weighted more heavily than the cam-

era motion content), and chooses three levels (L = 3), the first

V - 906

➡ ➡

level (k = 1) is Ω1 = [f6], where f6 and f8 were candidates

but f6 was chosen because it came first temporally. Similarly,

the rest of the levels are Ω2 = [f1, f3, f4, f5, f6, f8] and

Ω3 = [f1, · · · , f9] from Equation (2). The summary example

is shown in Figure 4. The elements at each level may be changed

based on priorities emphasized more or less by the client.

Abstraction Levels
(L=3)

Time

Level

Fig. 4. Video summary example.

This architecture enables users to browse and find relevant

data efficiently within the limited bandwidth, even though users

go through several rounds of interactions with the system in their

searching process for desired information in the worst case using

the key-frame sets. In practice, the database (a server) only needs

the key-frame set Ω because any level of summarization can be

performed at the user’s request and be displayed on the user’s dis-

playing device.

The proposed system also provides an interactive interface to

correct the results of the developed algorithms in Section 2 as an

option, even though the default operation of the system is fully

automatic. Errors produced by any one of the automatic algo-

rithms will propagate, resulting in event boundaries that are in-

correct. Therefore, it is important to provide interfaces so that a

human operator (user) can verify and correct the results produced

automatically at the video analysis and clustering steps. The pro-

posed system does not use predefined video structures and domain

knowledge, such as the broadcasting program and its story struc-

ture models to facilitate story segmentation. Hence, the proposed

approach is not domain or program specific. The content produced

from the analysis and clustering algorithm allows scalable sum-

mary generation. Thus, the video summary can be tailored accord-

ing to the client’s profile and needs.

Now, the tools provided to the system user in the server side

are described to modify the results of automatic story segmenta-

tion at both the shot and event levels. The steps in the interactive

generation of the final organized video can be summarized as fol-

lows:

1. Automatic construction of a shotlist, which contains the in-

formation of (sub)shot lists, from the video analysis, clus-

tering, and human face detection algorithms on the com-

pressed video.

2. Viewing and editing the (sub)shot change structure and clus-

tering results to add new (sub)shots or merge (sub)shots.

3. Automatic generation of multimedia video summary, where

the generated video clip is used as a short clip at the highest

level of the multi-resolution summary, while the generated

key frames are used as an input for clients’ browsing to find

their relevant information.

The second step in the list above requires user (human operator:

server side) interaction, and therefore, an interface needs to be pro-

vided with the required functionality. Since these interfaces work

with higher level representations of the video, a separate compo-

nent is also provided to view the raw video. The proposed system

provides three main interfaces to the user (server side), which com-

municate with each other so that changes made using one compo-

nent produce the appropriate updates in the other interfaces.

Analyzer: This interface is used to analyze video contents, to

show the intermediate graphs, and to produce shotlists. The

video stream is represented as key frames containing all in-

formation such as duration of (sub)shot and human content.

Video player: This interface is used for playing the video from

any point in the video. It has the functionality of a VCR

including fast forward, rewind, pause, and step.

Listview: This interface is used to view and alter the automatic

grouping of (sub)shots based on visual similarity. Once the

similarity-based clustering results have been finalized, they

are used as an interface to correct event (or story) bound-

aries. It also provides extra information, which includes

an icon of each shot in temporal order; the length of the

shot; all of the key frames of the shot; and motion, human,

and cluster information. A screen-capture illustrating the

Listview interface is shown in Figure 5. The user is allowed

Fig. 5. A screen-capture illustrating the Listview interface after

sorting of the priority column in descending order.

full freedom in changing the event boundaries and other in-

formation, since semantic information can often be missed

or misinterpreted by automatic processing. The following

operations are provided to facilitate changes on an item of

the list:

• Sort items: Each row lists all of the information ex-

tracted from the algorithm described in the previous

sections. Rows can be sorted by clicking a column to

sort.

• Add/delete rows: New rows can be added below the

destination row. Alternatively, unnecessary rows can

be removed by the user.

• Change priorities: Users can change the value of each

priority as is necessary for their own application. Af-

V - 907

➡ ➡

ter changing the values of priorities and sorting a pri-

ority column in the ListView, they can overview or

make a short clip with desired contents. For exam-

ple, a short clip can be made only with two signifi-

cant shots based on length of a shot and human ap-

pearance. Priorities provided in the proposed system

are temporal order of a shot, length of a shot, number

of key frames, camera motion, human presence, and

size of cluster.

The user (server side) can invoke these operations to regroup the

stories into more meaningful stories and sub-stories. The order

of stories can also be changed from their usual temporal order

to a more logical sequence. Though the primary function of the

Listview interface is to interact with the high-level structure, the

same interface can also be used to view and modify the groups

generated by the automatic clustering process.

5. EVALUATION

To evaluate the performance of the proposed automatic video ab-

straction system, the overall speed of the resulting summaries is

focused on.

To show that the proposed system can be applied to any type of

video sequence, four different compressed MPEG-1 sequences are

considered. These sequences include a movie sequence, a music

video, a documentary, and a CF sequence. All algorithms were

implemented in C++ and run on a Windows system with a 400

MHz Pentium-II processor.

For an overall system performance comparison, the successful

system by Huang et al. [6] is implemented as a baseline system.

They proposed extracting the key frames using an unsupervised

clustering scheme. Basically, all video frames within a shot, which

is segmented by a shot change detection algorithm [9], are first

clustered into certain number of clusters based on the color his-

togram similarity comparison where a pre-defined threshold con-

trols the density of each cluster. Next, all the clusters that are large

enough are considered as the key clusters, and a representative

frame closest to the cluster centroid is extracted from each of them.

To implement their system, we use the color histogram with DC-

images [5] to speed up the processing time and set the threshold

to 0.9. The overall processing time comparison is shown in Ta-

ble 2 for four different video sequences. The average speed of the

Table 2. Overall speed comparison between the proposed system

and Huang’ system.
Test

sequences
Time
length

Proposed system
(ratio)

Huang’ system
(ratio)

Movie 30 min. 3.38 min.(8.88) 66.05 min. (0.45)
Music video 4 min. 0.42 min. (9.52) 8.92 min (0.48)

Documentary 10 min. 1.09 min. (9.17) 20.96 min (0.48)
CF 15 sec. 1.56 sec. (9.62) 32.96 sec. (0.46)

Average 11.06 min 1.23 min (8.99) 24.12 min (0.46)

proposed system is almost 9 times faster than real-time and almost

19 times faster than that of the baseline system implemented. The

proposed system and the baseline system depend on the results of

a shot segmentation algorithm before clustering, but the baseline

system can compensate for this algorithm during key-frame extrac-

tion based on visual content similarities within a shot, where two

different shots may be concatenated unintentionally by the seg-

mentation algorithm. However, the baseline system is less effec-

tive with respect to the compactness of video summaries since it

does not merge visually similar shots that are separated by other

shots, such as the shot changes of dialogue shots where the camera

switches from speaker to speaker.

6. SUMMARY AND REMARKS

This paper describes an abstraction structure using user interac-

tion as the last step for video abstraction. For an overall system

speed comparison, another system is implemented and compared

with the proposed system based on speed. Performance results

show that the proposed system is almost 9 times faster than real-

time (playing time) and almost 19 times faster than the compared

system.

7. REFERENCES

[1] Y. Li, T. Zhang, and D. Tretter, “An overview of video abstrac-

tion techniques”, HP Laboratories Palo Alto, HPL-2001-191,

July 2001.

[2] A. Hanjalic and H. J. Zhang, “An integrated scheme for

automated video abstraction based on unsupervised cluster-

validity analysis,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 9, no. 8, Dec. 1999.

[3] S.-K. Lee and M. H. Hayes, “Efficient scene segmentation for

content-based indexing in compressed domain,” IEEE 2001
Workshop on Multimedia Signal Processing, Oct. 2001.

[4] S.-K. Lee and M. H. Hayes, “Real-time camera motion clas-

sification for content-based indexing and retrieval using tem-

plates,” in Proc. of IEEE int. Conf. Acoustics, Speech, and Sig-
nal Processing, May 2002.

[5] B. L. Yeo and B. Liu, “Rapid scene analysis on compressed

video,” IEEE Trans. on Circuits and Systems for Video Tech-
nology, vol. 5, No. 6, pp. 533-544, Dec. 1995.

[6] Y. Z. Huang, Y. Rui, T. S. Huang, and Mehrotra, “Adaptive

key-frame extraction using Unsupervised Clustering,” ICIP
’98, 1998.

[7] N. Omoigui, L. He, A. Gupta, J. Grudin, and E. Sanocki,

“Time-compression: System concerns, usage, and benefits,”

Proc. of ACM Conf. on Computer Human Interaction, 1999.

[8] A. Amir, D. Ponceleon, B. Blanchard, D. Petkovic, S. Srini-

vasan, and G. Cohen, “Using audio time scale modification

for video browsing,” Proc. of the 33rd Hawaii Int. Conf. on
System Sciences, vol. 1, Jan. 2000.

[9] J. S. Boreczky and L. A. Rowe, “Comparison of video shot

boundary detection techniques,” Proc. IS-T/SPIE Conf. Stor-
age and Retrieval for Image and Video Databases IV, I. K.

Sethi and R. C., Jain, Eds., vol. 2670, pp.170-179, 1996.

[10] H. Wang and S. F. Chang, “A highly efficient system for au-

tomatic face region detection in MPEG video,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 7, no. 4, pp.

615-628, 1997.

[11] S.-K. Lee and M. H. Hayes, “A fast clustering algorithm for

video abstraction,” ICIP 2003, 2003.

V - 908

➡ ➠

