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ABSTRACT
Multi-band, multi-stream and multi-modal approaches have proven to be
very successful both in experiments and in real-life applications, among
which speech recognition and biometric authentication are of particular
interest here. However, there is a lack of a theoretical study to justify
why and how they work, when one combines the streams at the feature
or classifier score levels. In this paper, we attempt to cast a light onto
the latter subject. While there exists literature discussing this aspect,
a study on the relationship between correlation, variance reduction and
Equal Error Rate (often used in biometric authentication) has not been
treated theoretically as done here, using the mean operator. Our findings
suggest that combining several experts using the mean operator, Multi-
Layer-Perceptrons and Support Vector Machines always perform better
than the average performance of the underlying experts. Furthermore,
in practice, most combined experts using the methods mentioned above
perform better than the best underlying expert.

1. INTRODUCTION
Multi-band is a technique often used in speech recognition or speaker
authentication that splits frequency into several subbands so that each
subband will be processed separately by its corresponding classifier. The
classifier scores are then merged by some combination mechanisms [1].
Multi-stream is a similar technique except that each stream uses differ-
ent feature sets. There are very few literature reported the use of multi-
stream for speaker authentication although both applications use concep-
tually similar techniques. One such example can be found in [2]. Multi-
modal is yet another technique that is applied in Biometric Authentica-
tion (BA), where each modality is a biometric trait associated to a person,
such as face and speech. These approaches have proven to be very suc-
cessful both in experiments and in real-life applications, e.g, [1, 3] for
speech recognition and [4–6] for face and speaker authentication.

Unfortunately, there is a lack of a theoretical study to justify why
and how they work, when one combines the streams at the feature or
classifier score levels. The former is called feature combination while the
latter is called posterior combination in [7]. In a separate study in BA [8],
these two approaches are called Variance Reduction (VR) via extractors
and VR via classifiers. The term variance reduction is originated from
[9, Chap. 9], from the observation that when two classifier scores are
merged by a simple mean operator, the resultant variance of the final
score will be reduced with respect to the average variance of the two
original scores.

To the authors opinion, theoretical justifications of these approaches
have not been thoroughly investigated. Pankanti et al [10] shaded some
lights on this subject using AND and OR operator. Unfortunately, their
proof requires the assumption that the scores due to the underlying ex-
perts are independent (not correlated), which is often not true when the
underlying experts receive the same biometric data. Sanchez et al [4]
showed both theoretically and empirically that fusing multiple instances
of biometric traits can indeed reduce the system error by as much as 40%.
The theoretically analysis, unfortunately, again did not deal with the case
when the expert opinions are correlated.
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Adobez, Conrad Sanderson and the anonymous reviewers for constructing com-
ments.

Hence, the central issues examined here are: (i) how correlation in
the classifier scores affects the combination mechanism, and (ii) how
this correlation affects the classification accuracy in terms of Equal Er-
ror Rate (EER; although there exists other variant of criterion such as
decision cost function, EER is a well-accepted criterion evaluation and
is very often used in the literature) . It should be underlined that there
exists many applications of fusion in BA but the theoretical aspect of
fusion, particularly dealing with correlation and in terms of Equal Er-
ror Rate, has not been treated elsewhere in the literature. In this study,
the mean operator is used as a case study for studying these issues be-
cause it can be interpreted theoretically. In practice, non-linear trainable
functions such as Multi-Layer Peceptrons and Support Vector Machines
can also be used but their analysis requires more efforts than done here.
Our findings suggest that the combined experts using the mean opera-
tor always perform better than the average of their participating experts.
Furthermore, in practice, most combined experts, particulary those using
non-linear trainable classifiers, perform better than any of their partici-
pating experts.

The rest of this paper is organised as follows: Section 2 studies vari-
ance reduction due to the mean operator and Section 3 shows its relation
with classification error reduction. Section 4 discusses how non-linear
combination mechanisms can be useful. Conclusions are in Section 5.

2. VARIANCE REDUCTION
Let x be a biometric measurement that represents a person, yj(x) be the
j-th measured relationship between the biometric trait x and the person
of a single access, and there are N such measurements per access, i.e.,
j = 1, . . . , N . For example, j could denote the j-th subband of a spec-
trogram representing the speech of a person, the j-th stream or type of
feature (e.g. Mel-scale Frequency Cepstrum Coefficients), the j-th bio-
metric modality (e.g., speech, face or fingerprint), the j-th sample, the
j-th classifier (but for the same access). In this context, yj(x) is referred
to as an instance of the j-th response of the biometric measurement x
given by an expert system (often called a score in the literature). Typ-
ically, this output (e.g. score) is compared with a predefined threshold
to make the accept/reject decision. Let h(x) to be a deterministic func-
tion or an ideal function that consistently gives +1 when x corresponds
to the client and −1 when it corresponds to the impostor. Then we can
write the mapping function of each response as the summation between
the desired function and an error wj(x):

yj(x) = h(x) + wj(x). (1)

Note that the error term wj(x) follows an unknown distribution W j(x)
with zero mean. Since wj(x) is dependent on x, it is obvious that yj(x),
which follows the distribution Y j(x), is also dependent on x. Dropping
x for clarity (since it is present in every term discussed), one can write
the expectation of Y j , E[Y j ], as:

E[Y j ] = E[h] + E[W j ] = h, (2)

Assuming that Y j and Y k can be correlated, the covariance between
them can be written as follows:

Cov(Y j , Y k) = E
�
(Y j − E[Y j ])(Y k − E[Y k])

�

= E
�
(Y j − h)(Y k − h)

�
= E[W jW k]. (3)

where Eqns. (1) and (2) are used. We would like to compare the variance
of two cases: (i) N responses are available per access and they are used
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separately, and (ii) all N responses are used together. For the first case,
this variance is called the average of variance over all N , and is denoted
as σ2

AV . It can be calculated as follows:

σ2
AV =

1

N

N�
j=1

Cov(Y j , Y j) =
1

N

N�
j=1

E[W jW j ], (4)

where Eqn. (3) is used. To calculate the variance of the second case,
one needs to determine how the responses are combined. One easy way
to combine them is to use the mean operator (more complicated, linear
(e.g. [9, Sec. 9.6]) and non-linear functions can also be used but the use
of mean operator is particularly useful for this discussion). The resultant
averaged response, denoted as Ȳ , is defined as follow:

Ȳ ≡ 1

N

N�
j=1

Y j , (5)

Note that according to this definition, E[Ȳ ] = 1
N

�N
j E[Y j ] = h. The

variance of Ȳ (over many accesses), denoted as σ2
COM , is called the

variance of average, and can be calculated as follows:

σ2
COM = Cov(Ȳ , Ȳ ) = E

�
(Ȳ − E[Ȳ ])(Ȳ − E[Ȳ ])

�
= E

�
(Ȳ − h)(Ȳ − h)

�
= E

��
1

N

N�
m=1

Y m − h

��
1

N

N�
n=1

Y n − h

��

= E

��
1

N

N�
m=1

(Y m − h)

��
1

N

N�
n=1

(Y n − h)

��

= E

��
1

N

N�
m=1

W m

��
1

N

N�
n=1

W n

��

= E

�
1

N2

�
N�

i=m

N�
n=1

W mW n

��
, (6)

where Eqns. (2) and (5) are used. The index m and n are introduced to
take into account the possible covariance of error among different W m

and W n. Before expanding Eqn. (6) further, let us define the correlation
among different W m and W n as follows:

ρ =
E[W mW n]

σmσn
, (7)

where σm and σn are the standard deviations of W m and W n. Note that
correlation has the property that −1 ≤ ρ ≤ +1. Going back to Eqn. (6),
we have:

σ2
COM = E

�
1

N2

�
N�

j=1

W jW j + 2

N�
m=1,m<n

W mW n

��

=
1

N2

N�
j=1

E[W jW j ] +
2

N2

N�
m=1,m<n

E[W mW n]

=
1

N2

N�
j=1

σ2
j +

2

N2

N�
m=1,m<n

ρσmσn, (8)

since E[W jW j ] = σ2
j by definition. Now, we need to consider two

cases: when Wm and Wn are independent from each other (i.e., ρ = 0)
and when they are not (i.e., ρ �= 0).

2.1. Independence Assumption: ρ = 0
In this case, E[W mW n] = 0, hence ρ = 0. As a consequence, the
right term in Eqn. (8) will be zero. In the same notation, Eqn. (4) can be
rewritten as:

σ2
AV =

1

N

N�
j=1

σ2
j , (9)

Comparing Eqns. (8) and (9), it can be easily seen that:

σ2
COM =

1

N
σ2

AV , (10)

which is true when W m and W n are not correlated. This is the lowest
theoretical bound that σ2

COM can achieve. Basically, this shows that by
averaging N scores, the variance of average (σ2

COM ) can be reduced by
a factor of N with respect to the average of variance (σ2

AV ), when two
instances of Y m and Y n are not correlated.

2.2. Dependence Assumption: ρ �= 0
The upper bound can be derived from the second assumption that Wm

and Wn are correlated, i.e. ρ �= 0. This worst-case bound is in fact equal
to σ2

AV , i.e., there is no gain. To be more explicit, we wish to test the
hypothesis that σ2

COM ≤ σ2
AV . By using Eqns. (8) and (9), this can be

shown as follows:
σ2

COM ≤ σ2
AV

1

N2

N�
j=1

σ2
j +

2

N2

N�
m=1,m<n

ρσmσn ≤ 1

N

N�
j=1

σ2
j (11)

By multiplying both sides by N2 and rearranging them, we obtain:

0 ≤ (N − 1)

N�
j=1

σ2
j − 2

N�
m=1,m<n

ρσmσn.

Given that (N − 1)
�N

i=1 σ2
i =

�N
i=1,i<j(σ

2
i + σ2

j ) (the proof can be
found in the appendix), this inequality can further be simplified to:

0 ≤
N�

m=1,m<n

(σ2
m + σ2

n) − 2

N�
m=1,m<n

ρσmσn

0 ≤
N�

m=1,m<n

�
σ2

m − 2ρσmσn + σ2
n

	

0 ≤
N�

m=1,m<n

�
(σ2

m − 2ρσmσn + ρ2σ2
n + (1 − ρ2)σ2

n)
	

0 ≤
N�

m=1,m<n

�
(σm − ρσn)2 + (1 − ρ2)σ2

n

	
. (12)

In other words, hypothesis in Eqn. (11) is always true, regardless of the
value ρ. As a consequence, we have just shown that σ2

COM ≤ σ2
AV .

Taking this conclusion and that of Eqn. (10), one can conclude that:
1

N
σ2

AV ≤ σ2
COM ≤ σ2

AV . (13)

Referring back to Eqn. (8), if ρ < 0, i.e., Wi is negatively correlated,
then the right hand term in this equation would be negative and conse-
quently σ2

COM ≤ 1
N

σ2
AV ! Obviously, negative correlation would help

improve the results. However, and unfortunately, in reality, negative cor-
relation will not happen if the underlying experts are trained separately,
i.e., for a given instant i, yi for i = 1, . . . , N , will tend to agree with
each other (hence positively correlated) most often than to disagree with
each other (hence negatively correlated). One possible exception will be
that the experts are specifically trained to be decorrelated or even nega-
tively correlated in a collaborative way. By fusing scores obtained from
experts that are trained independently (which is often so in multimodal
fusion), one can almost be certain that 0 ≤ ρ ≤ 1.

2.3. Introduction of α as a gain factor
To measure explicitly the factor of reduction, we introduce α, which can
be defined as follows:

α =
σ2

AV

σ2
COM

. (14)

By dividing Eqn. (13) by σ2
COM and rearranging it, we can deduce that

1 ≤ α ≤ N. (15)

One direct implication of variance reduction is that the more hypothe-
ses used (increasing N ), the better the combined system, even if the
hypotheses of underlying experts are correlated. This will come at a cost
of more computation proportional to N . Experiments in [1] (in speech
recognition) and [4] (in face verification) provide strong evidences to
support this claim. Moreover, the gain (measured using β which is non-
linearly but monotonically proportional to α, as defined in Section 3) is
often very small (near 1) compared to N [8].
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Fig. 1. Averaging score distributions in a two-class problem
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Fig. 2. Equal error rate versus the sum of standard deviations of client
and impostor scores

3. VARIANCE REDUCTION AND EER REDUCTION
Until now, it is not clear how variance reduction can lead to better classi-
fication, in terms of false rejection rate (FRR) and false acceptance rate
(FAR) in a biometric authentication system. Figure 1 illustrates the ef-
fect of averaging scores in a two-class problem, such as in BA where
an identity claim could belong either to a client or an impostor. Let us
assume that the genuine user scores in a situation where 3 samples are
available but are used separately, follow a normal distribution of mean
1.0 and variance (σ2

AV (x) of genuine users) 0.9, denoted as N (1, 0.9),
and that the impostor scores (in the mentioned situation) follow a nor-
mal distribution of N (−1, 0.6) (both graphs are plotted with “+”). If for
each access, the 3 scores are used, according to Eqn. (15), the variance
of the resulting distribution will be reduced by a factor of 3 or less. Both
resulting distributions are plotted with “o”. Note the area where both
the distributions overlap before and after. The latter area is shaded in
Figure 1. This area corresponds to the zone where minimum amount of
mistakes will be committed given that the threshold is optimal1. Decreas-
ing this area implies an improvement in the performance of the system.

Let the scores’ probability density function (pdf) be P (y|x ∈ xC)
for the client set C and P (y|x ∈ xI) similarly for the impostor set I .
Let us first assume that these pdfs are Gaussians. FRR and FAR can then
be defined as:

FRR(θ) =

� θ

−∞
P (y|x ∈ xC)dy

=

� θ

−∞

1

σC

√
2π

exp

�−(y − µC)2

2σ2
C

�
dy

=
1

2
+

1

2
erf

�
θ − µC

σC

√
2

�
, and (16)

1Optimal in the Bayes sense, when (1) the cost and (2) probability of both
types of errors are equal.

FAR(θ) =

� ∞

θ

P (y|x ∈ xI)dy

= 1 −
� θ

−∞
P (y|x ∈ xI)dy

= 1 −
�
1

2
+

1

2
erf

�
θ − µI

σI

√
2

��

=
1

2
− 1

2
erf

�
θ − µI

σI

√
2

�
, (17)

where
erf(z) =

2√
π

� z

0

exp
�−t2

�
dt,

which is the so-called error function. µC and σC are the expected value
and the standard deviation of scores belonging to the client set C and
similarly µI and σI for the impostor set I . Note that the use of an error
function for such analysis has been reported in [11], but with differences
in the definition of the error function. In another similar work (but limited
to the context of combining multiple samples) [4], the Equal Error Rate
(EER) curve was not calculated explicitly and validated via experiments
as done here. Furthermore, the issue on how the dependency among
samples affects the resultant variance was not studied theoretically as
done in Section 2.

The minimal error happens when FAR(θ) = FRR(θ) = EER, i.e., the
Equal Error Rate. Making these two terms equal (Eqns (16) and (17))
and using the property that erf(−z) = −erf(z), we can deduce that:

θ =
µIσC + µCσI

σI + σC
. (18)

By introducing Eqn. (18) into Eqn. (17) (or equivalently into Eqn. (16)),
we obtain:

EER =
1

2
− 1

2
erf

�
µC − µI

(σC + σI)
√

2

�
. (19)

To check the validity of Eqn. (19), we actually compared this theoretical
EER with the empirical EER, calculated by using the optimal threshold:

θ∗ = arg minθ|FAR(θ) − FRR(θ)|
and approximated by the commonly used Half Total Error Rate:

HTER = (FAR(θ∗) + FRR(θ∗))/2.

The difference between the theoretical EER and HTER is actually very
small, as shown in Figure 3. This difference is due to the fact that the
client and impostor distributions are not truly Gaussian. On the other
hand, it also reveals that the Gaussian assumption is acceptable in prac-
tice. Assuming that µC = 1 and µI = −1, we plot the graph EER by
varying the term σI + σC in Figure 2. EER is therefore a monotonically
increasing function as σI + σC increases.

Using the notation in Section 2, let σI
COM and σC

COM be the standard
deviations of the fused scores (using the mean operator) of both the im-
postor and client distributions, respectively. These definitions also apply
the average of the standard deviations σI

AV and σC
AV . From Eqn. (13),

we can deduce that:
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Fig. 3. The theoretical and empirical EER as a function of ratio
(µI − µC)/(σI + σC), carried out on 72 independent experiments on
the NIST2001 database with HTER ranging from 10% to 45%
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σI
COM ≤ σI

AV and σC
COM ≤ σC

AV .

Since EER is a monotonically increasing function as shown in Figure 2,
these inequalities imply that:

EER(σI
COM , σC

COM ) ≤ EER(σI
AV , σC

AV ),

when both the µC and µI are normalised such that they are constant
across different streams, bands and modalities.

In fact, without assuming the Gaussian distribution, as long as the
EER function has a monotonically increasing behaviour with respect to
σI + σC , the above conclusions remain valid. To require that EER be
a monotonically increasing function, the necessary condition is that the
right tail of the impostor pdf is a decreasing function and the left tail of
the client pdf is an increasing function. A Gaussian function exhibits
such behaviour on its left and right tails. Unfortunately, in the case of
non-Gaussian pdfs, the analytical analysis such as the one done here is
more difficult.

To evaluate the improvement due to variance reduction, we can de-
fine a gain factor β, similar to α defined in Eqn. (14), as follows:

βmean =
meani(EERi)

EERCOM
(20)

where EERCOM is the EER of the combined system (with reduced vari-
ance) and EERi is the EER of the i-th system. In our previous work [8]
in the context of biometric authentication, all experiments verified that
βmean ≥ 1, which is theoretically achievable. βmean can only mea-
sure the relative improvement with respect to the average EER of the
underlying expert. In practice, one wishes to know whether the resultant
combined expert is better than the best underlying expert. This can be
measured using:

βmin =
mini(EERi)

EERCOM
, (21)

which is defined very similarly to βmean, except that the minimum EER
of the underlying experts is used. βmin ≥ 1 implies that the resultant
expert is better than the best underlying expert. In fact, for both βmean

and βmin, (β−1 − 1) × 100% measures the relative reduction of the
combined expert with respect to the EER of the mean or the mininum
EER’s of the underlying experts.

4. NON-LINEAR COMBINATION STRATEGIES
The analysis in the previous section is indeed based on the combination
using the mean operator, which is a special case of a weighted sum with
equal weights. One can also use non-linear methods such as Multi-Layer
Perceptrons (MLPs) and Support Vector Machines (SVMs).

It is obvious that by using higher capacity (flexibility of a classifier
to represent the underlying function), variance can be further reduced on
the training set; see for instance [9, Chap 9] which demonstrated that a
weighted sum reduces more variance than the mean operator. However,
it is less obvious how this variance is reduced on unseen data. Hence,
using an empirical procedure such as cross-validation to find the suitable
capacity is of pivotal importance [8]. In this work, non-linear combina-
tion mechanisms such as MLPs and SVMs are superior over the average
operator most of the time. Furthermore, the higher the independence
of the underlying experts, the greater the β values. In this study, based
on the XM2VTS database, combining face and speech experts can yield
βmean as high as 5.56 (and βmin as high as 3.10), whereas combining
experts due to different features of the same modalities yields βmean as
high as 1.84 (and βmin as high as 1.12). Finally, diversity due to clas-
sifiers (therefore same features) yields βmean as high as 2.05 (and βmin

as high as 1.22). All these experiments show that βmean ≥ 1 and non-
linear combination mechanisms, such as MLP and SVM, are often (there
are exceptions) better than the mean operator, i.e., βmin of MLP and
SVM ≥ βmin of the mean operator.

5. CONCLUSIONS
This study contributes to fusion field in several aspects. Firstly, it clar-
ifies the intuition that independence of streams, subbands or modalities
(as observed in each individual expert hypothesis/score) is crucial in de-
termining the success of posterior combination. In the case when they are
dependent, fusion will also lead to improved results but the gain will be
smaller. This is explained by variance reduction due to the combination.

Secondly, variance reduction can be derived in many ways, other than
streams, bands (both are considered features) and modalities: samples,
virtual samples and classifiers [8]. Thirdly, analytical analysis shows that
the more hypotheses that are available the more robust the system will be.
This is confirmed by experiments as reported in [1]. Finally, the success-
ful use of non-linear techniques in combining scores really depends on
the correct estimate of the underlying hyperparameters using techniques
such as cross-validation, as supported by evidences in [8]. Although the
study here concerns only classification of two-class problems, extending
the analysis to N -class problems is straightforward, e.g., by using one-
against-all encoding scheme. This theoretical study is certainly limited
in scope as it does not provide a means to predict the best combination
out of N streams/bands/modalities.

6. APPENDIX

Proof of (N − 1)
�N

i=1 σ2
i =
�N

i=1,i<j(σ
2
i + σ2

j )

Let σi be a random variable and i = 1, . . . , N . The term�N
i=1,i<j(σ

2
i +σ2

j ) can be interpreted as
�N

i=1

�N
j=i+1(σ

2
i +σ2

j ). The

problem now is to count how many σ2
k there are in the term, for any

k = 1, . . . , N .
There are two cases here. The first case is when i = k, the term�N

i=1

�N
j=i+1(σ

2
i +σ2

j ) becomes:
�N

j=k+1(σ
2
k +σ2

j ). There are (N −
k) terms of σ2

k.
In the second case, when j = k, the term

�N
i=1

�N
j=i+1(σ

2
i + σ2

j )

then becomes:
�k−1

i=1 (σ2
i + σ2

k). There are (k − 1) terms of σ2
k.

The total number of σ2
k is just the sum of these two cases, which is

(N −k)+(k−1) = (N −1), for any k drawn from 1, . . . , N . The sum
of (N −1) σ2

k over all possible k = 1, . . . , N then gives (N −1)
�N

k=1

σ2
k.

Therefore, (N − 1)
�N

i=1 σ2
i =
�N

i=1,i<j(σ
2
i + σ2

j ). �
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