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ABSTRACT

In sign-language or gesture recognition, articulated hand
motion tracking is usually the first step before achieving
behaviour understanding. However the non-rigidity of the
hand, complex background scenes, and occlusion make track-
ing a challenging task. In this paper we present a novel
hybrid HMM/Particle filter framework for simultaneously
tracking and recognition of non-rigid hand motion. The
novel contribution of the paper is that we unify the indepen-
dent treatments of non-rigid motion and rigid motion into a
single, robust Bayesian framework and demonstrate the ef-
ficacy of this method by performing successful tracking in
the presence of significant occlusion clutter.

1. INTRODUCTION

Many multimedia signal processing applications such as surveil-
lance, sports, and human-computer interfacing [1] require
robust estimation and understanding object motion. In this
paper, we address the problems of tracking and recognition
of articulated hand motion in complex scenes, and scenes
with significant occlusions in a single view. In these situ-
ations, simultaneous estimation and recognition of articu-
lated hand poses can be a challenging problem but is crucial
for real-world applications of gesture recognition. We ex-
plicitly decompose the articulated hand motion into rigid
motion and non-rigid dynamical motion. Rigid motion is
approximated as motion of a planar region and approached
using a Particle filter [7] while non-rigid dynamical motion
is analyzed by a Hidden Markov Model (HMM) filter [5].
Our hybrid HMM/Particle filter (Joint Bayes Filter) tracker
demonstrates its strength by successfully recovering contin-
uously evolving hand poses in complex scenes. Due to its
ability to link the observations and underlying motion pat-
terns in a generative fashion, hand articulation is correctly
estimated even under significant occlusions.

The organization of this paper is as follows: in section
2, we will introduce the problem and give a brief outline of
the algorithm. In section 3, the Learning-Based Tracking

component (HMM) is examined with a geometrical inter-
pretation. In the next section, we discuss the global motion
tracking issues and details of the Joint Bayes filter (JBF)
tracker. Afterwards some experimental results will be given.
Finally we present a summary of this work.

2. JOINT BAYES FILTER METHOD

Visual tracking algorithms usually utilize one or several ro-
bust image cues as tracker representations. To deal with fast
appearance deformation, strong occlusion clutter and com-
plex scene, we propose the use of shape and colour as our
JBF tracker representation. Global shape region provides a
more reliable measure of the dynamic appearance changes
than sparse boudary edges. Colour is also useful, because
it can not only provide task-specific object representation
(for example, skin colour can segment the hand from the
shadows and form a silhouette sequence), but also provide
a good measure of the moving region when we need to ap-
proximate ‘rigid region’ motion [4].

In our Joint Bayes Filter (JBF) method, a colour-based
particle filter provides a robust estimation of non-rigid ob-
ject translation and localizes the most likely hand location
for the HMM filter input. In turn, the shape output from
the HMM filter provides the importance weighting for the
particle set before the resampling stage and the particle set
updating in the prediction stage. This combination distin-
guishes our method from others. For illustrative purposes,
we introduce the overall tracking system in Figure 2. The
relationship between the two independent Bayesian filters,
the HMM filter and the Particle filter, is also summarized.

3. LEARNING-BASED TRACKING

In this section, we present a detailed analysis of Learning-
Based Tracking in our Joint Bayes Filter approach. We as-
sume that non-rigid motion periodically causes appearance
changes. The underlying motion patterns of the articula-
tions are intractable, but the appearance changes often ob-
serve statistical constraints. We compute image moments
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Fig. 1. (a) Flow chart of new tracking system, (b) The relationship between the two independent components.
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Fig. 2. Articulated hand motion embedded into a 3D met-
ric space using LLE algorithm [2]. Trajectory of the hand
motion data can be approximated by Linear Markov Chains.

(X = {m0, . . . , mn} where mi is the ith moment of the
shape) of the silhouettes to estimate the shape class.

Figure 2 shows the distributions of articulated hand ap-
pearances in the manifold. Here, tracing any obvious trajec-
tory will complete a cycle of articulated hand motion. The
sparseness of the clouds not only presents the evidence of
possible hidden states lying under the motion sequence, but
also encodes the belief of possible state transitions in the
articulated motion.

3.1. Learning and Tracking

Similar to the statistical learning and inference in HMMs,
we have to align the dynamic human motion to discrete
states and approximate human motion dynamics from the
examples. During tracking, in order to estimate what is go-
ing to be next most likely appearance correctly, the best un-
derlying state sequence has to be decoded from current ob-
servation and a prior dynamic appearance model.

A classical VQ algorithm [3] is used in the learning
stage to group the hand appearance data into clusters, here
L2 distance measure is used without strong parametric as-
sumption. Best representative example appearances are then

selected from the cluster centers. Thus we not only ob-
tain the tracker representations, but also align articulated
human motion into discrete states. The essential aspect of
the Learning-Based Tracking algorithm: shape dynamics, is
straightforward to learn. HMM provides such hand motion
dynamics P (Xt+1|Xt),

P (Xt+1|Xt) =
∑T−1

t=1 ξij(t)
∑T−1

t=1 γi(t)

where ξij(t) denotes the probability of being in state i at
time t and at state j at time t + 1 given the model and
the observation, γi(t) be defined as the probability of be-
ing in state i at time t, given the entire observation sequence
and the model. This can be related to ξij(t) by summing
as γi(t) =

∑N
j=1 ξij(t). N is the number of latent states,

this dynamic model P (Xt+1|Xt) is typically stronger than
those from kalman filter or condensation tracker. In those
trackers, the dynamics are usually built through a rather ad-
hoc prediction (usually an AR model) of local feature mea-
surements. In Learning-Based Tracking, the P (Xt+1|Xt)
is built through the statistics of latent states evolution. Es-
timating the expected number of transitions from state si to
state sj and the expected number of transitions from state si

will determine the likelihood that one appearance evolves
to another appearance. Learning human dynamics at an
object-level provides a convienient and useful picture of com-
plex human motion.

In the tracking component, the Viterbi algorithm [8] is
adapted for decoding the best underlying state sequence as
well as tracking non-rigid hand motion. In order to find the
single best state sequence, Q = (q1, q2, ..., qt) (also known
as the motion trajectory such as A ⇀↽ B ⇀↽ C ⇀↽ G ⇀↽ H),
for the given observation O = (o1, o2, ..., ot) (the measure-
ments such as Â, B̂, Ĉ... etc), we first define the quantity

δt(i) = max
q1,q2,...,qt−1

P [q1q2...qt−1, qt = i, o1o2...ot|λ]

where λ refers to a particular HMMs for hand motion anal-
ysis. δt(i) is the best score (highest probability) along a sin-
gle path, at time t, which accounts for the first t observations

V - 890

➡ ➡



and ends in state i. Since during visual tracking, making the
right predictions of the tracker states at each time instants
is the major objective, we come to the Bayesian Tracking
formula.

P (Xt|Zt) = max{δt−1(X) · P (X |Xt−1) · P (Zt|Xt)}

4. COLOUR-REGION TRACKING

Tracking non-rigid hand motion cannot be successful with-
out a robust global motion estimator, colour-histogrambased
particle filter [4] provides a robust region estimation of the
articulated hand. Nevertheless, particle filter tracker has
some drawbacks. First it lacks a sophisticated mechanism
for updating the region’s scale changes. In fact, the adap-
tive scale corresponds to the non-rigid shape changes. In
our JBF framework, we explicitly model the dynamics of
the particle set as a first-order AR process, updated by out-
put from the HMM filter. A second problem with the tradi-
tional particle filter is that factored sampling often generate
many lower-weighted samples which have little contribu-
tion to the posterior density estimation. Accuracy and effi-
ciency are sacrificed. However, in our approach, the shape
output from the HMM filter provides an additional sensor
which can reweight the particles and form an ‘important’
region for the particle filter.

Here we first introduce the general notations and then
summarize the JBF algorithm. In the HMM filter, let Xt

represent the shape tracker state (associated with examplars),
and Zt denote the image observations (image moments of
the silhouette in this case) at time t. d(Xt, Zt) refers to
the distance measure in feature space. The state vector of
the Particle fitler is defined as xt = (x, y, sx, sy), where
x, y, sx, sy refer to the rectangle location L(x, y) in the im-
age plane and scales along x,y coordinates. R(xt) is the
candidate region thus defined, M is the number of parti-
cles used. bt(u) ∈ {1, . . . , N} is the bin index associated
with the colour vector yt(u) at pixel location u in frame
t. Assume we have a reference colour histogram: q� =
q�(n)n=1,...,N obtained at initial frame. qt(xt) denotes the
current observation of the colour histogram [4]. D([q�, qt(xt)])
represents the Bhattacharyya distance.

The gt(Xt) used is similar to the one proposed in ICon-
densation [7], gt(Xt) ∼ exp(−λ(C(St) + ∆xt)) where
C(St) denotes the centroid of the shape, and ∆xt is the off-
set between the centroid of the shape and the colour region.
In the JBF tracker, AH(xt) denotes the most likely hand re-
gion, which is a rectangle area. AS(Xt) refers to the shape
tracker output from the HMM filter.

Joint Bayes Filter Algorithm

1. Initilization.

Particle Filter: Select the hand region, obtain
the reference colour-histogram q�. For i =
1, 2, . . . , M , select the initial particle set x

(i)
0 .

HMM Filter: Obtain AH(x0) from the tracker
initilization. Perform colour segmentation in
AH(x0) to obtain the silhouette.

2. Prediction.

Particle Filter: For i = 1, 2, . . . , M , draw
new sample set x̃t

(i) ∼ p(xt|x(i)
t−1), here

the dynamics process is a first order AR
model. Calculate the colour-histogram distri-
bution qt(x̃t). Evaluate the importance weights

ω̃t
(i) =

p(xt|x(i)
t−1)

gt(Xt)
p(zt|x̃t

(i)), where p(zt|x̃t
(i)) ∼

exp(−λD2[q�, qt(xt)]), and normalize the impor-
tance weights.

HMM Filter: Generate the new prior
P (Xt|Z1:t−1) by propogating P (Xt−1|Zt−1)
through the markov chain.

3. Update.

Particle Filter: Resample with replacement N

particles (x(i)
t ;i = 1, 2, . . . , N ) from the set

(x̃(i)
t ;i = 1, . . . , N ) according to the importance

weights. Output the AH(xt) from the particle fil-
ter.

HMM filter: Obtain the AH(xt) from the
Particle filter, perform colour segmentation,
get the observation density P (Zt|Xt) ∼
exp(−λd(Xt, Zt)). Combine with the prior
P (Xt−1|Zt−1) to estimate P (Xt|Z1:t) which is
the most likely appearance at time t.

5. EXPERIMENT

We design several experiments to examine the performance
of the JBF tracker.

Tracking dynamic appearances using JBF. We ob-
tain a long video sequence of cyclic hand motion. 60% of
the data is used for training the dynamic appearance model
P (Xt|Xt−1) and selecting the exemplar set, the rest for
tracking. 200 particles are used to approximate posterior
density. Near real-time performance has been achieved for
the overall tracking system. The result is shown in Figure
3. Small non-rigid appearance deformations and varying
changing speed between successive frames are well cap-
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Fig. 3. Tracking results of the JBF tracker, the Particle filter determines the most likely hand region (the red rectangle), the
HMM filter produce the most likely appearances (the green contours).

Fig. 4. The HMM filter in JBF withstands several frames of occlusion clutters.

tured by the HMM filter. In fact, the gait of the articulated
hand motion is encoded in the strong appearance dynamics
which is built in the learning stage. We also notice that even
using the weak cue of image moments alone, tracking non-
rigid hand poses in the JBF framework can achieve rather
good performance.

Coping with occlusion. Experiment (Figure 4) shows
that skin colour occlusions do not prevent the tracker from
recovering the articulated hand poses. During occlusion, the
observation density P (Zt+1|Xt+1) contributes little to the
shape appearance tracking. A strong dynamic appearance
model P (Xt|Xt−1) obtained during the learning stage, and
a correct initial estimate P (X0|Z0) in the tracking stage, are
two important factors which enable the HMM filter tracker
to give an optimal estimate even under harsh conditions.

6. CONCLUSIONS

This paper presents an unifying framework of human mo-
tion tracking and understanding. The Joint Bayes filter tracker
proposed extends the state of the art in visual tracking [6].
We explicitly explore non-rigid object (hand in this paper)
motion analysis in the presence of scene clutter and occlu-
sion, and demonstrate the probabilistic inference mecha-
nism of the HMM filter. We show that state-based inference
is also robust to occlusion clutter and unreliable measure-
ments. Both components are fully Bayesian and therefore
this combination (JBF filter) gives robust tracking results in
real-world applications.
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