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ABSTRACT 

Visual information in a speaker’s face is known to improve 
robustness of automatic speech recognizers. However, most 
studies in audio-visual ASR have focused on “visually clean” 
data to benefit ASR in noise. This paper is a follow up on a 
previous study that investigated audio-visual ASR in visually 
challenging environments. It focuses on visual speech front end 
processing, and it proposes an improved, appearance based face
and feature detection algorithm that utilizes Gaussian mixture 
model classifiers. This method is shown to improve the accuracy 
of face and feature detection, and thus visual speech recognition, 
over our previously used baseline system. In turn, this translates 
to improved audio-visual ASR, resulting in a 10% relative 
reduction of the word-error-rate in noisy speech.  

1. INTRODUCTION 

Visual speech has been shown to improve ASR in noise [1][2]. 
These studies, which have used “visually clean” data, have 
contributed to establishing the rationale for audio-visual ASR 
(AV-ASR). However, recording high-quality visual speech is not 
always a feasible or affordable way to augment ASR in noise. 
Indeed, real applications often encounter visually challenging 
environments with variations in the speaker’s head pose and 
characteristics, as well as in the environment lighting and back-
ground, and the video acquisition sensor’s quality. However, 
very few studies [3][4] have investigated AV-ASR performance 
in realistic and non-ideal environments, where in addition to 
possibly noisy audio, the visual channel quality is poor. Accurate 
detection and acquisition of facial features is an indispensable 
first step for AV-ASR, and, as expected, it becomes an issue in 
visually challenging domains. Indeed, in a previous study [3], 
where face and feature detection was performed using Fisher’s 
Linear Discriminant Analysis (LDA), although visual speech still 
benefited ASR in noise, the visual-only speech recognition error 
rate of connected-digit strings degraded significantly from a 
studio-like environment (29.5%) to more challenging office 
(46.1%) and moving-car (66.7%) domains. This degradation was 
attributed to poor face and facial feature detection performance 
in such domains. Improving their performance is the subject of 
this paper.  
       In the literature, most studies on face detection use 
appearance-based methods based on neural networks [5], LDA 
[3][4][6][7], support vector machines [8], eigenfaces [9], hidden 
Markov models (HMM) [10], or Gaussian mixture models 

(GMM) [11]. These studies have used a strong learner for face 
detection or recognition. Viola and Jones [12] proposed a quite 
different but very fast face detection algorithm based on 
AdaBoost and feature selection (weak learner).  

 Our baseline AV-ASR system uses appearance based face 
and facial feature detection, by means of an LDA projection and 
eigenfaces [3][4][6][7]. In this paper, and in order to improve its 
performance in visually challenging domains, we extend it to 
utilize GMM classifiers. In addition, the effect of various 
algorithm parameters, such as the face template size is also 
explored. To benchmark the visual front end improvement due to 
the GMM based face and feature detection algorithm, introduced 
in this paper, we report visual-only and audio-visual speech 
recognition results on a visually challenging dataset. 
 The paper is organized as follows: Section 2 describes the 
baseline visual front end. Section 3 reviews the main 
components of the AV-ASR system. Section 4 presents the 
GMM based face and facial feature detection algorithm. Section 
5 briefly describes the database used in this work. The results are 
presented in Section 6 and a summary in Section 7. 

2. BASELINE VISUAL FRONT END 

The visual front end is based on a previous IBM face and facial 
feature detection system [3][4][6][7]. The method is a two-stage 
algorithm, and it is described in Figure 1. Given the video of a 
spoken utterance, face tracking is applied to find faces in video 
images. If faces are found, 26 facial features are then 
subsequently located. At the face detection stage, the images are 
scanned at different scales to find face candidates, since face size 
is unknown. At the feature detection stage, a detected face image 
is rotated and scaled based on the parameters of the detected 
face. Then, each feature is searched for over a specific region 
(based on statistics on training). At each stage, face or feature 
candidate vectors x (consisting of the grey-level pixel values, 
normalized in a rectangular template) are scored by a two-class 
Fisher discriminant as well as their “distance from feature 
space” (DFFS), defined as 
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where vi are the eigenvectors of a training set of vectors {x}. In 
this work, 26 facial features (see Table 1) are tracked and 
searched hierarchically. The top-level features are searched first 
using a rectangular template of size 14x11 pixels, with respect to 
a normalized eye separation of 15 pixels (see the large box in 
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Figure 1). The bottom-level features are subsequently detected, 
over search regions defined relative to the top-level features, 
using a template of 14x11 pixels, with respect to a normalized 
eye separation of 45 pixels (see the small box in Figure 1). 

Figure 1. Baseline face and feature detection system. The 
templates for face detection, as well as top and bottom level 
feature finding are also depicted, relative to eye-separation.

Table 1. 26 facial features used in this study (L.:Left, R.: Right, 
I.: Inner, O: Outer). Top-level  features are depicted in boldface.  

Hairline L.I.Eye L.Nostril L.O.Eyebrow 
R.I.Eyebrow L.Eye L.Nose Nose bridge 
L.I.Eyebrow L.O.Eye R.Mouth T.O.Lip 
R.Ear L.Ear Mouth T.I.Lip 
R.O.Eye R.Nose L.Mouth L.O.Lip 
R.Eye R.Nostril Chin  
R.I.Eye Nose R.O.Eyebrow  

3. AUDIO-VISUAL ASR SYSTEM COMPONENTS  

There are three main components of an AV-ASR system: The 
visual front end design, the audio-visual integration strategy, and 
the speech recognition method. This work focuses on the visual 
front end design. Section 2 described how face and facial 
features are located. The next step is to decide the type of visual 
speech features to be fed into the AV-ASR system. As 
summarized in [3], there are three possibilities in this regard: 
Appearance-based features that typically seek a suitable 
transformation of the pixel values within a visual region-of-
interest (ROI), shape-based features that consist of a geometric 
or statistical representation of the lip contour, and combination 
of the two strategies.  
 In this study, an appearance-based method is used. The 
procedure to obtain visual speech features is the same as in [3] 
and is shown in Figure 2. Based on the face and feature detection 
results, the mouth location, size, and orientation are tracked and 
then smoothed over a temporal window to improve robustness. 
Based on the resulting estimates, a 64x64 pixel ROI is obtained 
for every video frame. This ROI is further normalized to 
alleviate differences in rotation, size, and lighting. Subsequently, 

a 2-D DCT, LDA, and a maximum likelihood linear 
transformation (MLLT) [2] are applied, and finally, visual 
features of dimension 41 are derived. 

Figure 2. Block diagram of the AV-ASR system employed in this 
study. Time-synchronous, 60-dimensional audio feature vectors 
and 41-dimensional visual feature vectors are extracted both at 
a 100 Hz rate. A simple feature fusion method is used. 

In addition to visual features, time-synchronous audio 
features are extracted at a frame rate of 100 Hz. First, 24 mel-
frequency cepstral coefficients of the speech signal are computed 
and mean normalized to provide static features. Then, an 
LDA/MLLT cascade [2] is applied to produce 60-dimensional 
audio features (see also Figure 2). 

Following feature extraction, a feature fusion strategy is 
used. The 101-dimensional concatenated audio-visual vectors 
are then projected onto a 60-dimensional space by an 
LDA/MLLT. The speech recognition module employs a hidden 
Markov model (HMM) with Gaussian mixture emission 
probabilities [3][4]. The HMM parameters are obtained by the 
traditional maximum likelihood approach, based on available 
training data.  

4. GMM BASED VISUAL FRONT END 

To apply the GMM based face and feature detection algorithm, 
first a 2-D DCT transform is performed to de-correlate and 
“compress” the input vectors. Thus, a reduced number of DCT 
components are used for GMM based modeling without 
significant performance degradation. This section describes the 
2-D DCT transform, GMM based face detection, GMM based 
feature detection, face template size adjustment, and training 
feature sample generation. 

4.1. 2-D DCT transform 

A separable 2-D DCT transform is applied. Let I denote the 
normalized face or feature candidate of size MxN. Then the 2-D 
DCT transform D is computed as: 
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After the DCT transform, the D matrix is organized into a vector 
using a zig-zag scan, with only the first K = 32 or 50 coefficients 
used in classification.  
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4.2. GMM based face detection 

Face detection is a two-class problem. To account for the 
variations in face size, pose, lighting, and speaker characteristics, 
a GMM based classification method is employed. The face
samples are extracted from a limited number of video images 
manually annotated. To minimize the mismatch between training 
and test data, the face selection box is slightly translated and 
rotated to produce additional samples (a total of 10 variations for 
each annotated face). The non-face samples are randomly chosen 
from the video images (but located away from the annotated 
faces). Again, 10 random non-faces are generated for each 
annotated face. For both face and non-face GMMs, up to 50 
mixture components are trained. Note that our implementation of 
EM training automatically selects the actual number of mixture 
components. The DCT vector dimensionality is 50. 

4.3. Face template size 

Figure 3. Adjustment of the face template.  

In [3][4][6][7], the face template is chosen to be an 11x11 pixel 
square. The ratio of face height and face width is different from 
person to person. However, for most people, the faces look 
closer to rectangles than squares. Therefore, in this study, the 
face template is adjusted from 11x11 to 11x14 pixels, as shown 
in Figure 3. 

4.4. GMM based facial feature detection 

Figure 4. An example of mouth (left) and non-mouth (right) 
sample generation. 

Facial feature detection is also a two-class problem. Similarly to 
the face detection, manually annotated feature samples are also 
slightly translated to produce additional samples (totally 5 
variations for each annotated feature), whereas non-feature 
samples are chosen randomly from the video images with 
constraints: 4 random samples are generated near the annotated 
feature; one random sample is generated in medium distance 
from the annotated feature; and one random sample is located far 
away from the annotated feature (see Figure 4). Note that for 

feature detection, the top-level feature detection is performed in 
a low-resolution image, and thus a small translation would result 
in large deviation from the annotated position. Therefore, for 
top-level features, there is only one sample for each annotated 
feature. For both feature and non-feature GMMs, up to 50 
mixture components are trained. The DCT vector dimensionality 
is 32.

5. DATABASE 

Most AV-ASR research has concentrated on databases collected 
in ideal visual conditions. In this paper, we examine more 
realistic and challenging data from [3]. The corpus was captured 
using a laptop-based audio-visual data collection prototype. 
Wideband audio was recorded using the built-in laptop 
microphone and uncompressed video by means of an 
inexpensive web-cam, utilizing the USB 2.0 interface. The video 
(at 30 frames/sec) was obtained with automatic gain control 
present and at a 320x280 pixel size. The database subjects were 
recorded in their own offices without the use of a teleprompter, 
and thus, lighting, background, and head-pose vary greatly. A 
total of 109 subjects uttering connected digit strings are 
available.  
 The database is divided into a training set (4591 utterances; 
about 6 hours) and test set (537 utterances; about 40 minutes). 
For face and feature detection purposes, 1368 face images from 
the training set are manually annotated for building face and 
feature models (see Figure 5). In addition, 253 face images from 
the test set are also annotated for evaluating visual front end 
performance. 

Figure 5. An example of manually annotated facial features. 

6. RESULTS 

We now proceed to report results on face detection, facial feature 
detection, and ASR experiments on the database. 

6.1. AV-ASR paradigm 

In this study, a multi-speaker scenario is considered, where 
separate data from all subjects are used for both training and 
testing. In addition to the original database acoustic signal (SNR 
≈ 15 dB), audio-only and AV-ASR are also considered on 
artificially corrupted audio by additive “speech babble” (two 
cases: SNR ≈ 8 dB and SNR ≈ 4 dB). A two-stage stack 
decoding algorithm is employed for recognition, with unknown 
digit-string length. HMMs with 159 context dependent states 
and approximately 3.2k Gaussian mixture components are used. 
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6.2. Visual front end performance 

The face detection accuracy is expressed as a percentage of 
detected faces within 20% of their manually annotated location, 
orientation, and scale. Table 2 lists the face detection accuracy 
using different methods. Clearly, GMM based face detection 
outperforms a simple LDA algorithm. Changing the face 
template size from 11x11 to 11x14 pixels also improves face 
detection performance. Hereafter, the face template size is 
11x14, if not specified. 

Table 2. Face detection accuracy.  

Algorithm LDA GMM 
Face template size 11x11 11x11 11x14 
Accuracy, % 91 97 98 

Figure 6 shows the facial feature detection error rate. A 
feature is not considered detected if the location error is larger 
than 10% of the annotated eye separation. The figure shows that 
the improvement from GMM based face detection translates to 
improvement in LDA based feature detection, and that GMM 
based feature detection clearly outperforms LDA based feature 
detection.   

Figure 6. Facial feature detection error rate using  LDA/LDA, 
GMM/LDA, and GMM/GMM for face/feature detection. 

As mentioned in the introduction, face and feature detection 
is a crucial step in AV-ASR. Improvements in facial feature 
detection should result in more accurate ROI extraction, and thus 
better visual-only ASR. This is the case (see Table 3), the GMM 
based face and feature detection algorithm contributes to a 
visual-only WER reduction of about 8% (46.51% � 42.96%).  

6.3. AV-ASR 

Potamianos and Neti [3] report that the visual modality remains 
of benefit to ASR even in visually challenging environments. In 
Table 3, the results show that the improvement in visual-only 
ASR translates to improved AV-ASR. The GMM based face and 
feature detection improves visual-only ASR by about 8% 
(46.51% � 42.96%) and AV-ASR in noise by about 10% 
(13.89% � 12.51%) in WER, compared to the LDA based 
algorithm. Note that in clean audio environments, the good AV-
ASR performance (WER = 2.24%), the small test set, and the 
nature of EM based HMM training may have contributed to the 
higher WER (2.38%) for the GMM based feature detection than 
that (2.24%) for an LDA based method. 

Table 3. WER for visual-only (VI), audio-only (AU), and audio-
visual ASR with different visual front ends (face/feature 
detection: LDA/LDA; GMM/LDA; GMM/GMM). Three acoustic 
conditions are considered: clean (A0, SNR ≈ 15 dB) and two 
with additive babble noise (A1, SNR ≈ 8 dB; A2; SNR ≈ 4 dB). 

Face and feature detection algorithm 
AU LDA/LDA GMM/LDA GMM/GMM

VI  46.51 45.42 42.96 
A0+V 2.51 2.53 2.24 2.38 
A1+V 12.64 7.44 7.31 6.89 
A2+V 24.91 13.89 13.22 12.51 

7. DISCUSSION 

We investigated a new visual front end for AV-ASR in a 
“challenging” environment that presents difficulties for accurate 
visual processing. The new visual front end includes GMM 
based face and feature detection, a face template size of 11x14, 
and random non-feature generation with constraints. The results 
show that this visual front end improves AV-ASR over a 
previously used baseline system in visually challenging 
environments.
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