
ON REALTIME REMOTE DISPLAY OF A DIGITAL VIDEO RECORDING SYSTEM

Jenq-Neng Hwang and Qiang Liu

Dept. of Electrical Engineering, Box #352500
University of Washington, Seattle, WA 98195

{hwang, liuq}@ee.washington.edu

ABSTRACT

Digital Video Recording (DVR) systems have been popular
these years following the rapid development of digital video
devices and video coding techniques. A DVR is a computerized
surveillance system that supports all the features of traditional
videotape system by using digital cameras, motion detector, pan
& tilt controls, capture cards and a computer. It can save the
captured frames as harddisk files, which can be playbacked later.
Another advantage of DVR is that it supports real-time remote
display of the captured video frames while the digital recording
is working at the same time. In this paper, we present the
research on the real-time remote display of a DVR system,
especially the congestion control algorithm for the multi-channel
transmission case. Our proposed congestion control algorithm
can achieve efficient and stable real-time transmission of multi-
channel captured video sequences for a wide range of bandwidth
capacity. The algorithm is also TCP-friendly as it follows the
Additive Increase Multiplicative Decrease (AIMD) scheme.
Several trade-offs are made to fit for the special purpose of
remote surveillance.

1. INTRODUCTION

A DVR is a computerized surveillance system that supports all
the features of traditional videotape system by using digital
cameras, motion detector, pan & tilt controls, capture cards and a
computer. It can save the captured frames as harddisk files,
which can be playbacked later. A DVR is considered more
convenient and reliable than the traditional time lapsed
videotape system and its usage has been popular these days.

A DVR has another advantage over traditional videotape
system in that it supports real-time remote display of the
captured video frames while the digital recording is working at
the same time. For example, a factory owner can install several
cameras on site and setup a DVR system for recording. The
owner can then use a client software connecting to the DVR
server and receive the captured video in real-time, no matter
where he or she is.

From the point of view of network transmission, the format
of the client software is rather irrelevant: it can be a plug-in
within a browser, or a standalone appliance. The only
requirement for the client part is that it can send some
performance statistics to the server. UDP transport protocol has
been used to provide the real-time deliveries of video frames. As
a consequence, packet loss may happen and cause quality
degradation to the current video frame and possibly the
following video frames (if inter-frame dependencies exist, such

as the use of P frames). The client can request a key frame
refresh, which implies that the video codec is required to support
starting a key frame encoding at any time point.

When the client has limited bandwidth, it has to request the
server to send video at a lower rate. This may impair the quality
of the recorded video files on harddisk. A scalable video codec
can be used so that it can save full-quality video on harddisk
while send adaptive rate video into the network. We assume the
DVR server has applied the scalable video coding technique and
only focus on the network rate adaptation part. Typically, a DVR
system has multiple cameras (4 cameras and 16 cameras are most
popular, as shown in Fig. 1). A client can request to receive or
not receive any of them. Also, a client can set the desired video
quality for each camera independently. This implies that the
DVR server needs a rate allocation scheme to assign an
appropriate target rate for each active camera (an active camera
means at least one client requests to display it) from the total
available bandwidth.

Fig. 1. A DVR client with 16 camera views displayed.

Since the end-to-end available bandwidth from the server to
the client is changing all the time due to all other competing
usage of the network, the received video quality may also change
along time accordingly. This instability is not desirable for the
display of video sequence. For remote surveillance purpose,
stability issue should be addressed. A tradeoff between stability
and efficiency has to be made. With limited bandwidth, a client
also needs to make a trade-off between quality and frame rate.
Higher quality means larger frame size and thus lower frame
rate. Normally, it is necessary to have higher frame rate for the
video with more motions.

Another issue is the show up speed of the initial pictures.
Although the performance in the steady phase (after a while
since the connection is established) is more important, the users
always expect to see all the videos as soon as possible after the
connection is established. The fast show-up of initial pictures

V - 8610-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

might not be possible if the user also sets the video to high
quality because the initial key frames (I frame) may take a long
time to arrive the client. This issue can be solved by one more
trade-off at the startup phase. As the bandwidth is always shared
with multiple users in the Internet, it is necessary for the
transmission scheme to be friendly to other connections. Since a
large body of the network traffic uses TCP, the adopted protocol
should be TCP-friendly.

In this paper, we present a network transmission scheme
that can support the real-time remote surveillance of DVR
system. The scheme addresses all the fore-mentioned issues. It
uses multi-channel token-bucket model to allocate bandwidth to
different cameras; it achieve stability by using adaptive
parameters in the congestion control algorithm; it is TCP-
friendly by using Additive Increase Multiplicative Decrease
(AIMD) rate adaptation. The rest of this paper is organized as
follows. We review some of the related work in Section 2. In
Section 3, we present various aspects of the adaptive
transmission scheme. Descriptions of our experiment results are
presented in Section 4. Finally, Section 5 concludes the paper
and discusses some of our future work.

2. RELATED WORK

There has been a large body of work on congestion control for
rate-based UDP applications. Rejaie, et al. proposed RAP [1],
where the sender controls the rate by using packet-loss and
round-trip-time information to ensure TCP-friendliness. Sisalem
and Schulzrinne proposed LDA, which is also a sender based
adaptation scheme [2]. Packet loss and round-trip-time are
feedbacked through RTP. LDA applies dynamic determination
of the Additive Increase Rate (AIR).

Packet-pair technique [3-5] can be used to estimate the
bottleneck bandwidth with as few as just two packets. Without
cross traffic, the dispersion of arrival time of two back-to-back
packets reflects the path bottleneck. The packet-pair model
assumes that the two packets queue together at the bottleneck
link and at no later link. Jain and Dovrolis used Pathload [6] to
estimate end-to-end available bandwidth. Their method is based
on detecting the one-way delay increase trend, which is an
indicator of congestion. Liu and Hwang extended their work to
allow the usage of packets with variable size, which can be the
video data [7].

MPEG-4 fine-grain scalable (FGS) video codec [8] has
made it very simple and flexible for the video sender to adapt to
the network dynamics. FGS is also packet-loss resilient.

Our study differs from pervious studies in that it supports
correlated multi-channel videos and the stability of the algorithm
is explicitly addressed

3. THE ADAPTIVE TRANSMISISON SHCEME

3.1. TCP Connection: A Control Channel

We assume there is a TCP connection between the client and the
server besides the UDP “connection” from the server to the
client. The authentication can be conducted through this reliable
TCP connection. Also the TCP connection can be used to
transmit control signals such as (1) Packet loss indicator
(including which camera has loss), (2) One-way delay trend

notification, and (3) Bottleneck bandwidth estimation
notification. All these control signals are sent from the client to
the server.

3.2. Video Frame Packetization

The proposed transmission scheme doesn’t require any specific
video codec. The only requirement is that the codec can refresh a
key frame at any time point. We allow the user to choose what
level of quality for each camera. The server then adapts to the
available bandwidth by changing the frame rate. With a higher
quality setting, the camera will have a lower frame rate compared
to other cameras.

Depending on the quality setting of the camera, the encoded
video frame varies in size. For a 240320× size video, the
encoded key frame size using the highest quality may be more
than 20K bytes. Packetization is required for such a large video
frame to be safely transmitted through the Internet. In our
experiment, we use fixed packet size of 1400 bytes, although the
user can configure this setting.

There are some protocol parameters written into the packet
header including packet number (independently counted per
camera; used for packet loss detection), sending timestamp (used
for one-way delay calculation) and camera number. The client
uses these parameters to detect packet loss, calculate one-way
delay and for other purposes.

3.3. Bottleneck Bandwidth Estimation

The server periodically sends packet pairs of random size
(between 1000 to 1400 bytes) to the client. After the client
receives the packet pairs, it can retrieve the sending timestamp
from the packet header and calculate relative delay of the two
packets. An estimation of bottleneck bandwidth is obtained by
using the method proposed in [5]. The client then notifies the
server this bottleneck bandwidth estimation though the TCP
control connection. The server calculates and keeps both median
value and maximum value of these bottleneck bandwidth
estimations reported from the client. Note the median value and
maximum value are updated accumulatively whenever a new
estimation arrives.

The median value and maximum value of the bottleneck
bandwidth estimation are used in the congestion control to adjust
the target sending rate. Because the bottleneck bandwidth
between the server and the client is unlikely to change except for
some abnormal cases (such as a route change along the path), the
period of the packet pair sending is set to 1 minute in our
experiments. However, to speed up the bottleneck bandwidth
discovery, the period is set to 1 second within the first 30
seconds after the client connects to the server.

3.4. One-way Delay Trend

The client can use the local receiving timestamp and the sending
timestamp contained in the packet header to calculate the one-
way delay of each packet. For every fixed number (typically, 50)
of packets, the client can calculate whether there is an increase
trend among the one-way delays of these packets. The trend can
be calculated as in [7] and the result is sent to the server if an
increase trend exists. The server can use this information to help
adjust the target sending rate. Specially, if an increase trend

V - 862

➡ ➡

exists for the one-way delay, it implies the current sending rate
has reached the end-to-end available bandwidth. The server
stops increasing target sending rate for a while after it receives
an increase trend notification from the client.

3.5. Target Sending Rate Adaptation

The server maintains a target sending rate, which is the target
total sending rate for all the cameras, including the packet
header, IP/UDP header, and packet-pair overhead. The server
tries to send the encoded video conforming to this target sending
rate. The server also monitors and maintains the actual sending
rate of all cameras. It adapts the target rate by using the statistics
reported from the client. Simply put, it increases the target rate
when there is no congestion while it decreases the target rate
when congestion occurs. The algorithm follows AIMD strategy
to be TCP-friendly. However, considering the issue of stability,
we use 60% to 80% for the decreasing rate (TCP uses fixed
50%). The algorithm decreases the target sending rate when one
of the following events happens: (1) At least one camera has
packet loss of 5% or more, or (2) half or more cameras of the all
the active cameras have packet loss. The algorithm is more
conservative at decreasing rate than TCP to help the stability of
the target rate. Table 1 shows how the target rate is decreased:

 Actual rate at the same
level with target rate

Actual rate is much
small than target rate

Rate decreased
recently

80% of target rate 80 % of actual rate

Rate not
decreased
recently

60% of target rate 60 % of actual rate

Table 1. How the target sending rate is decreased

At the same time of decreasing the target sending rate, all
cameras with packet loss are forced to refresh a key frame. The
server also records the target sending rate when the last packet
loss happens. This target-rate-at-loss is used to adjust the
behavior of the rate increasing. When there is no packet loss
recently, the server tries to increase the target sending rate.
However, to improve the stability of the rate adaptation and
offset the conservative rate decreasing, the rate increasing is also
more conservative than TCP. The target rate is attempted to
increase every 3-5 seconds with the exceptions of: (1) an
increase trend of one-way delay is reported in the last minute; or
(2) current target rate is 10% larger than the actual rate; or (3)
current target rate is higher than the median value of bottleneck
bandwidth estimation; or (4) current target rate is higher than
75% of the maximum value of the bottleneck bandwidth
estimation.

When it is allowed to increase the target rate, 1% increase is
used when (1) current target rate is lower than target-rate-at-
loss; and (2) no packet loss happens in the last 30 seconds; and
(3) current target rate is no more than 10Kbps larger than actual
rate. Otherwise, 0.1% is used for the rate increase. We use here
many empirical parameters, which have been tested in our
experiments. The algorithm can in fact work well with a large
range of parameters assignment, i.e., the algorithmic
performance is not very sensitive to the choice of parameters.
The basic instinct for those parameters is to achieve a more
conservative target rate increase/decrease and thus a more stable

video quality. The initial target sending rate at the beginning of a
connection has to be configured by the user at the server.

3.6. Sending Rate Allocation

With a constantly updated target sending rate, the server is ready
to allocate this total rate to each individual camera. A naïve
strategy is to allocate the total rate evenly to each camera and let
them to encode and send packets independently. However, by
letting all cameras operate independently, the total rate is not
smooth, especially at the initial stage when all cameras are trying
to send the big key frames.

We use a multi-channel token bucket model [9] to control
the sending rate of each individual camera. Each camera
maintains a token bucket with size of 1K bytes, while all
cameras share a global token bucket with size of 20K bytes. The
token generating rate for the global bucket is the target sending
rate while the bucket of each individual camera has a share of the
target sending rate (depending on the active camera number) as
its token generating rate. When a camera has a video frame ready
for sending, it checks both the global bucket and the bucket of
itself. The video frame is encoded and sent only if both buckets
are non-empty. Some adjustments are used when the actual
sending rate of a specific camera is considerably higher or lower
than it normal share of the total target sending rate. By using this
multi-channel token-bucket model, the total target sending rate is
fairly allocated to each camera and the total actual sending rate is
much smoother.

3.7. Startup Phase

The user always expects to see the initial pictures of all cameras
as soon as possible after the client is connected to the server.
However, at the beginning of the connection, all cameras are
trying to send out the big key frames and there is considerable
delay for the initial picture show up (especially when the video
quality is set to high, which means bigger key frame). To speed
up the initial picture show up, the following steps are taken at
the startup phase:

(1) Enforce lower quality within the first 30 seconds
regardless of user’s setting, so the key frame is smaller.

(2) Shift the timing of key frame sending of different
cameras evenly in a 2 –3 seconds spread.

(3) Refresh key frame more frequently (such as one key
frame per 5-10 seconds) within the first 30 seconds in
case some key frame packets are lost.

4. EXPERIMENTS AND RESULTS

We conducted extensive Internet experiments using a real DVR
system implementing our congestion control algorithm. MPEG-4
FGS video codec [8] is used for the video. Various network
conditions including LAN, Between ISPs, University to ISP,
Across-Pacific, and even dial-up are tested. The results are
satisfactory as the algorithm can achieve stable and smooth
sending rate for long time period under various network
conditions.

Our testing DVR system has 16 cameras. The video size is
240320× . To have an acceptable subjective quality and frame

rate for all 16 cameras, 200Kbps to 500Kbps bandwidth is

V - 863

➡ ➡

required. However the algorithm also works for the dial-up case
from the point of view of congestion control. The sending rate is
rather smooth because the multi-channel token bucket model can
regulate the rate effectively. Of course, the frame rate is very low
for the dial-up case. Fig. 2 shows the calculated target sending
rate and the actual rate for a time period of about 4 minutes.

Fig. 2. Target rate and actual rate in an ADSL session.

With the startup phase speed up enhancement (Section 3.7),
all cameras can show up the initial picture within 2 seconds for a
200Kbps or higher connection. Without it, the worst case for
initial picture show up can be as late as 15 seconds.

Through the experiments, we have found out that all
cameras tend to interleave their key frames rather evenly after
the connection is established for a while, although the key
frames of different cameras are sent out almost at the same time
at the beginning. Fig. 3 shows that how many key frames in total
are sent out each second for the beginning 3 minutes.

Fig. 3. Key frames refresh frequency.

5. CONCLUSIONS AND FUTURE WORK

We have presented an adaptive transmission scheme for real-
time remote display of multiple cameras for a DVR system. The
scheme applies the AIMD rate adaptation with explicit
consideration of video quality stability. A multi-channel token
bucket model is used to allocate the calculated target rate among
multiple cameras. Packet-pair technique is used to estimate the
bottleneck bandwidth along the path and one-way delay trend
detection is used to estimate the available bandwidth. The
adopted congestion control is more conservative at increasing
and decreasing rate compared with TCP in order to achieve a
more smooth video quality.

We also show the results of some Internet transmission
experiments. MPEG-4 FGS video codec are used to encode the
captured video. The results are satisfactory as the algorithm can
achieve stable and smooth sending rate for long time period
under various network conditions.

We plan to continue our work in several directions.
Currently the total target sending rate is evenly shared by all
cameras without any differentiation. However the allocation can
be adjusted by considering different level of motion of each
camera. For example, the camera with high motion can be biased
with a little bit more share of bandwidth than other cameras. We
also plan to research the scenario of multiple concurrent clients
where a one-to-many transmission is necessary.

6. REFERENCES

[1]. R. Rejaie, M. Handley, D. Estrin, “RAP: An End-toend
Rate-based Congestion Control Mechanism for Realtime
Streams in the” in Proc. IEEE INFOCOM 99, vol. 3, pp.
1337-1345, 1999.

[2]. D. Sisalem and H., “The Loss-delay Based Adjustment
Algorithm: A TCP-friendly adaptation” Workshop on Net-
work and Operating System Support for Digital Audio and
Video, July 1998.

[3]. R.L. Carter and M.E. Crovella, "Measuring Bottleneck Link
Speed in Packet-Switched Networks," Performance
Evaluation, Vol. 27-8, pp. 297-318, Oct. 1996.

[4]. K. Lai and M. Baker, "Measuring Bandwidth", In
Proceedings of IEEE INFOCOM, New York, NY, USA,
April 1999.

[5]. C. Dovrolis, P. Ramanathan, and D. Moore, "What do
Packet Dispersion Technniques Measure?", In Proceedings
of ACM SIGCOMM, August 2001.

[6]. M. Jain and C. Dovrolis, “End-to-End Available
Bandwidth: Measurement Methodology, Dynamics, and
Relation with TCP Throughput,” IEEE/ACM Transactions
on Networking, Vol. 11, No. 4, pp. 537-549, August 2003.

[7]. Q. Liu and J.N. Hwang, “End-to-end Available Bandwidth
Estimation and Time Measurement Adjustment for
Multimedia QoS”, presented at ICME 2003, Baltimore,
MD, USA, July 2003.

[8]. H. M. Radha, M. van der Schaar, Y. Chen, “The MPEG-4
Fine-Grained Scalable Video Coding Method for
Multimedia Streaming Over IP”, IEEE Transactions on
Multimedia, Vol. 3, No. 1, March 2001.

[9]. S. Tanenbaum, Computer Networks, Prentice Hall, 1996.

V - 864

➡ ➠

