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ABSTRACT 

Digital Video Recording (DVR) systems have been popular 
these years following the rapid development of digital video 
devices and video coding techniques. A DVR is a computerized 
surveillance system that supports all the features of traditional 
videotape system by using digital cameras, motion detector, pan 
& tilt controls, capture cards and a computer. It can save the 
captured frames as harddisk files, which can be playbacked later. 
Another advantage of DVR is that it supports real-time remote 
display of the captured video frames while the digital recording 
is working at the same time.  In this paper, we present the 
research on the real-time remote display of a DVR system, 
especially the congestion control algorithm for the multi-channel 
transmission case. Our proposed congestion control algorithm 
can achieve efficient and stable real-time transmission of multi-
channel captured video sequences for a wide range of bandwidth 
capacity. The algorithm is also TCP-friendly as it follows the 
Additive Increase Multiplicative Decrease (AIMD) scheme. 
Several trade-offs are made to fit for the special purpose of 
remote surveillance. 

1. INTRODUCTION 

A DVR is a computerized surveillance system that supports all 
the features of traditional videotape system by using digital 
cameras, motion detector, pan & tilt controls, capture cards and a 
computer. It can save the captured frames as harddisk files, 
which can be playbacked later. A DVR is considered more 
convenient and reliable than the traditional time lapsed 
videotape system and its usage has been popular these days. 

A DVR has another advantage over traditional videotape 
system in that it supports real-time remote display of the 
captured video frames while the digital recording is working at 
the same time.  For example, a factory owner can install several 
cameras on site and setup a DVR system for recording. The 
owner can then use a client software connecting to the DVR 
server and receive the captured video in real-time, no matter 
where he or she is.  

From the point of view of network transmission, the format 
of the client software is rather irrelevant: it can be a plug-in 
within a browser, or a standalone appliance. The only 
requirement for the client part is that it can send some 
performance statistics to the server. UDP transport protocol has 
been used to provide the real-time deliveries of video frames. As 
a consequence, packet loss may happen and cause quality 
degradation to the current video frame and possibly the 
following video frames (if inter-frame dependencies exist, such 

as the use of P frames). The client can request a key frame 
refresh, which implies that the video codec is required to support 
starting a key frame encoding at any time point.  

When the client has limited bandwidth, it has to request the 
server to send video at a lower rate. This may impair the quality 
of the recorded video files on harddisk. A scalable video codec 
can be used so that it can save full-quality video on harddisk 
while send adaptive rate video into the network. We assume the 
DVR server has applied the scalable video coding technique and 
only focus on the network rate adaptation part. Typically, a DVR 
system has multiple cameras (4 cameras and 16 cameras are most 
popular, as shown in Fig. 1). A client can request to receive or 
not receive any of them. Also, a client can set the desired video 
quality for each camera independently. This implies that the 
DVR server needs a rate allocation scheme to assign an 
appropriate target rate for each active camera (an active camera 
means at least one client requests to display it) from the total 
available bandwidth.  

Fig. 1.  A DVR client with 16 camera views displayed. 

Since the end-to-end available bandwidth from the server to 
the client is changing all the time due to all other competing 
usage of the network, the received video quality may also change 
along time accordingly. This instability is not desirable for the 
display of video sequence. For remote surveillance purpose, 
stability issue should be addressed. A tradeoff between stability 
and efficiency has to be made. With limited bandwidth, a client 
also needs to make a trade-off between quality and frame rate. 
Higher quality means larger frame size and thus lower frame 
rate. Normally, it is necessary to have higher frame rate for the 
video with more motions. 

Another issue is the show up speed of the initial pictures. 
Although the performance in the steady phase (after a while 
since the connection is established) is more important, the users 
always expect to see all the videos as soon as possible after the 
connection is established. The fast show-up of initial pictures 
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might not be possible if the user also sets the video to high 
quality because the initial key frames (I frame) may take a long 
time to arrive the client. This issue can be solved by one more 
trade-off at the startup phase. As the bandwidth is always shared 
with multiple users in the Internet, it is necessary for the 
transmission scheme to be friendly to other connections. Since a 
large body of the network traffic uses TCP, the adopted protocol 
should be TCP-friendly. 

In this paper, we present a network transmission scheme 
that can support the real-time remote surveillance of DVR 
system. The scheme addresses all the fore-mentioned issues. It 
uses multi-channel token-bucket model to allocate bandwidth to 
different cameras; it achieve stability by using adaptive 
parameters in the congestion control algorithm; it is TCP-
friendly by using Additive Increase Multiplicative Decrease 
(AIMD) rate adaptation. The rest of this paper is organized as 
follows. We review some of the related work in Section 2. In 
Section 3, we present various aspects of the adaptive 
transmission scheme. Descriptions of our experiment results are 
presented in Section 4. Finally, Section 5 concludes the paper 
and discusses some of our future work. 

2. RELATED WORK 

There has been a large body of work on congestion control for 
rate-based UDP applications. Rejaie, et al. proposed RAP [1], 
where the sender controls the rate by using packet-loss and 
round-trip-time information to ensure TCP-friendliness. Sisalem 
and Schulzrinne proposed LDA, which is also a sender based 
adaptation scheme [2]. Packet loss and round-trip-time are 
feedbacked through RTP. LDA applies dynamic determination 
of the Additive Increase Rate (AIR).  

Packet-pair technique [3-5] can be used to estimate the 
bottleneck bandwidth with as few as just two packets. Without 
cross traffic, the dispersion of arrival time of two back-to-back 
packets reflects the path bottleneck. The packet-pair model 
assumes that the two packets queue together at the bottleneck 
link and at no later link. Jain and Dovrolis used Pathload [6] to 
estimate end-to-end available bandwidth. Their method is based 
on detecting the one-way delay increase trend, which is an 
indicator of congestion. Liu and Hwang extended their work to 
allow the usage of packets with variable size, which can be the 
video data [7]. 

MPEG-4 fine-grain scalable (FGS) video codec [8] has 
made it very simple and flexible for the video sender to adapt to 
the network dynamics. FGS is also packet-loss resilient.  

Our study differs from pervious studies in that it supports 
correlated multi-channel videos and the stability of the algorithm 
is explicitly addressed 

3. THE ADAPTIVE TRANSMISISON SHCEME 

3.1. TCP Connection: A Control Channel

We assume there is a TCP connection between the client and the 
server besides the UDP “connection” from the server to the 
client. The authentication can be conducted through this reliable 
TCP connection. Also the TCP connection can be used to 
transmit control signals such as (1) Packet loss indicator 
(including which camera has loss), (2) One-way delay trend 

notification, and (3) Bottleneck bandwidth estimation 
notification. All these control signals are sent from the client to 
the server. 

3.2. Video Frame Packetization

The proposed transmission scheme doesn’t require any specific 
video codec. The only requirement is that the codec can refresh a 
key frame at any time point. We allow the user to choose what 
level of quality for each camera. The server then adapts to the 
available bandwidth by changing the frame rate. With a higher 
quality setting, the camera will have a lower frame rate compared 
to other cameras. 

Depending on the quality setting of the camera, the encoded 
video frame varies in size. For a 240320×  size video, the 
encoded key frame size using the highest quality may be more 
than 20K bytes. Packetization is required for such a large video 
frame to be safely transmitted through the Internet. In our 
experiment, we use fixed packet size of 1400 bytes, although the 
user can configure this setting. 

There are some protocol parameters written into the packet 
header including packet number (independently counted per 
camera; used for packet loss detection), sending timestamp (used 
for one-way delay calculation) and camera number. The client 
uses these parameters to detect packet loss, calculate one-way 
delay and for other purposes. 

3.3. Bottleneck Bandwidth Estimation

The server periodically sends packet pairs of random size 
(between 1000 to 1400 bytes) to the client. After the client 
receives the packet pairs, it can retrieve the sending timestamp 
from the packet header and calculate relative delay of the two 
packets. An estimation of bottleneck bandwidth is obtained by 
using the method proposed in [5]. The client then notifies the 
server this bottleneck bandwidth estimation though the TCP 
control connection. The server calculates and keeps both median 
value and maximum value of these bottleneck bandwidth 
estimations reported from the client. Note the median value and 
maximum value are updated accumulatively whenever a new 
estimation arrives. 

The median value and maximum value of the bottleneck 
bandwidth estimation are used in the congestion control to adjust 
the target sending rate. Because the bottleneck bandwidth 
between the server and the client is unlikely to change except for 
some abnormal cases (such as a route change along the path), the 
period of the packet pair sending is set to 1 minute in our 
experiments. However, to speed up the bottleneck bandwidth 
discovery, the period is set to 1 second within the first 30 
seconds after the client connects to the server. 

3.4. One-way Delay Trend 

The client can use the local receiving timestamp and the sending 
timestamp contained in the packet header to calculate the one-
way delay of each packet. For every fixed number (typically, 50) 
of packets, the client can calculate whether there is an increase 
trend among the one-way delays of these packets. The trend can 
be calculated as in [7] and the result is sent to the server if an 
increase trend exists.  The server can use this information to help 
adjust the target sending rate. Specially, if an increase trend 
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exists for the one-way delay, it implies the current sending rate 
has reached the end-to-end available bandwidth. The server 
stops increasing target sending rate for a while after it receives 
an increase trend notification from the client. 

3.5. Target Sending Rate Adaptation

The server maintains a target sending rate, which is the target 
total sending rate for all the cameras, including the packet 
header, IP/UDP header, and packet-pair overhead. The server 
tries to send the encoded video conforming to this target sending 
rate. The server also monitors and maintains the actual sending 
rate of all cameras. It adapts the target rate by using the statistics 
reported from the client. Simply put, it increases the target rate 
when there is no congestion while it decreases the target rate 
when congestion occurs. The algorithm follows AIMD strategy 
to be TCP-friendly. However, considering the issue of stability, 
we use 60% to 80% for the decreasing rate (TCP uses fixed 
50%). The algorithm decreases the target sending rate when one 
of the following events happens: (1) At least one camera has 
packet loss of 5% or more, or (2) half or more cameras of the all 
the active cameras have packet loss. The algorithm is more 
conservative at decreasing rate than TCP to help the stability of 
the target rate. Table 1 shows how the target rate is decreased: 

 Actual rate at the same 
level with target rate 

Actual rate is much 
small than target rate 

Rate decreased 
recently 

80% of target rate 80 % of actual rate 

Rate not 
decreased 
recently 

60% of target rate 60 % of actual rate 

Table 1. How the target sending rate is decreased 

At the same time of decreasing the target sending rate, all 
cameras with packet loss are forced to refresh a key frame. The 
server also records the target sending rate when the last packet 
loss happens. This target-rate-at-loss is used to adjust the 
behavior of the rate increasing. When there is no packet loss 
recently, the server tries to increase the target sending rate. 
However, to improve the stability of the rate adaptation and 
offset the conservative rate decreasing, the rate increasing is also 
more conservative than TCP. The target rate is attempted to 
increase every 3-5 seconds with the exceptions of: (1) an 
increase trend of one-way delay is reported in the last minute; or 
(2) current target rate is 10% larger than the actual rate; or (3) 
current target rate is higher than the median value of bottleneck 
bandwidth estimation; or (4) current target rate is higher than 
75% of the maximum value of the bottleneck bandwidth 
estimation.  

When it is allowed to increase the target rate, 1% increase is 
used when (1) current target rate is lower than target-rate-at-
loss; and (2) no packet loss happens in the last 30 seconds; and 
(3) current target rate is no more than 10Kbps larger than actual 
rate. Otherwise, 0.1% is used for the rate increase. We use here 
many empirical parameters, which have been tested in our 
experiments. The algorithm can in fact work well with a large 
range of parameters assignment, i.e., the algorithmic 
performance is not very sensitive to the choice of parameters. 
The basic instinct for those parameters is to achieve a more 
conservative target rate increase/decrease and thus a more stable 

video quality. The initial target sending rate at the beginning of a 
connection has to be configured by the user at the server. 

3.6. Sending Rate Allocation

With a constantly updated target sending rate, the server is ready 
to allocate this total rate to each individual camera. A naïve 
strategy is to allocate the total rate evenly to each camera and let 
them to encode and send packets independently. However, by 
letting all cameras operate independently, the total rate is not 
smooth, especially at the initial stage when all cameras are trying 
to send the big key frames.  

We use a multi-channel token bucket model [9] to control 
the sending rate of each individual camera. Each camera 
maintains a token bucket with size of 1K bytes, while all 
cameras share a global token bucket with size of 20K bytes. The 
token generating rate for the global bucket is the target sending 
rate while the bucket of each individual camera has a share of the 
target sending rate (depending on the active camera number) as 
its token generating rate. When a camera has a video frame ready 
for sending, it checks both the global bucket and the bucket of 
itself. The video frame is encoded and sent only if both buckets 
are non-empty. Some adjustments are used when the actual 
sending rate of a specific camera is considerably higher or lower 
than it normal share of the total target sending rate. By using this 
multi-channel token-bucket model, the total target sending rate is 
fairly allocated to each camera and the total actual sending rate is 
much smoother. 

3.7. Startup Phase

The user always expects to see the initial pictures of all cameras 
as soon as possible after the client is connected to the server. 
However, at the beginning of the connection, all cameras are 
trying to send out the big key frames and there is considerable 
delay for the initial picture show up (especially when the video 
quality is set to high, which means bigger key frame). To speed 
up the initial picture show up, the following steps are taken at 
the startup phase: 

(1) Enforce lower quality within the first 30 seconds 
regardless of user’s setting, so the key frame is smaller. 

(2) Shift the timing of key frame sending of different 
cameras evenly in a 2 –3 seconds spread. 

(3) Refresh key frame more frequently (such as one key 
frame per 5-10 seconds) within the first 30 seconds in 
case some key frame packets are lost. 

4. EXPERIMENTS AND RESULTS 

We conducted extensive Internet experiments using a real DVR 
system implementing our congestion control algorithm. MPEG-4 
FGS video codec [8] is used for the video. Various network 
conditions including LAN, Between ISPs, University to ISP, 
Across-Pacific, and even dial-up are tested. The results are 
satisfactory as the algorithm can achieve stable and smooth 
sending rate for long time period under various network 
conditions. 

Our testing DVR system has 16 cameras. The video size is 
240320× . To have an acceptable subjective quality and frame 

rate for all 16 cameras, 200Kbps to 500Kbps bandwidth is 
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required. However the algorithm also works for the dial-up case 
from the point of view of congestion control. The sending rate is 
rather smooth because the multi-channel token bucket model can 
regulate the rate effectively. Of course, the frame rate is very low 
for the dial-up case. Fig. 2 shows the calculated target sending 
rate and the actual rate for a time period of about 4 minutes. 

Fig. 2.  Target rate and actual rate in an ADSL session.

With the startup phase speed up enhancement (Section 3.7), 
all cameras can show up the initial picture within 2 seconds for a 
200Kbps or higher connection. Without it, the worst case for 
initial picture show up can be as late as 15 seconds. 

Through the experiments, we have found out that all 
cameras tend to interleave their key frames rather evenly after 
the connection is established for a while, although the key 
frames of different cameras are sent out almost at the same time 
at the beginning. Fig. 3 shows that how many key frames in total 
are sent out each second for the beginning 3 minutes. 

Fig. 3.  Key frames refresh frequency. 

5. CONCLUSIONS AND FUTURE WORK 

We have presented an adaptive transmission scheme for real-
time remote display of multiple cameras for a DVR system. The 
scheme applies the AIMD rate adaptation with explicit 
consideration of video quality stability. A multi-channel token 
bucket model is used to allocate the calculated target rate among 
multiple cameras. Packet-pair technique is used to estimate the 
bottleneck bandwidth along the path and one-way delay trend 
detection is used to estimate the available bandwidth. The 
adopted congestion control is more conservative at increasing 
and decreasing rate compared with TCP in order to achieve a 
more smooth video quality. 

We also show the results of some Internet transmission 
experiments. MPEG-4 FGS video codec are used to encode the 
captured video. The results are satisfactory as the algorithm can 
achieve stable and smooth sending rate for long time period 
under various network conditions. 

We plan to continue our work in several directions. 
Currently the total target sending rate is evenly shared by all 
cameras without any differentiation. However the allocation can 
be adjusted by considering different level of motion of each 
camera. For example, the camera with high motion can be biased 
with a little bit more share of bandwidth than other cameras. We 
also plan to research the scenario of multiple concurrent clients 
where a one-to-many transmission is necessary. 
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