
ONLINE BANDWIDTH-EFFICIENT SCHEDULING FOR VIDEO-ON-DEMAND WITH
RECURSIVE PATCHING

Yinqing Zhao, Zhi Shi and C.-C. Jay Kuo

Integrated Media Systems Center and Department of Electrical Engineering
University of Southern California, Los Angeles, CA 90089-2564

E-mail: {yinqingz, zshi, cckuo}@sipi.usc.edu

ABSTRACT

The service bandwidth optimization problem for multi-
cast video-on-demand systems with early service merging
is investigated, and a series of on-line algorithms based on
recursive patching are proposed in this research. We adopt a
simple fixed-threshold starting rule and introduce a control
window to regulate the degree of service merging. Our re-
sults indicate that the cost-aware recursive patching (CARP)
with a carefully chosen control window can significantly re-
duce the service bandwidth consumption. We also study
the promoting rule and the limited client buffer effect for
practical recursive patching algorithms. Experimental result
shows that the proposed recursive patching schemes outper-
form graceful patching with a wide margin even with a very
small client buffer size.

1. INTRODUCTION

Recent advances in computing and networking technology
make real time multimedia applications such as video-on-
demand (VoD) a reality. VoD services usually consume a
large amount of resources, primarily the storage space and
the network bandwidth. Moreover, the maximum number
of concurrent streams that a server can support is limited by
the smaller one of the server I/O bandwidth and the inter-
connection bandwidth. It is therefore important to design
efficient scheduling algorithms for video streaming to im-
prove the bandwidth utilization and overall system perfor-
mance.

Similar to the patching algorithm proposed in [1], recur-
sive patching is a technology built on the multicast mecha-
nism, by which multiple clients can share the data from the
same stream. The difference is that recursive patching can
achieve further bandwidth reduction by allowing the merge
of partial streams.

Previous research on recursive patching focus on the
mathematical analysis and the improvement of the compet-
itive ratio of online algorithms to the optimal off-line al-
gorithm [2, 3, 4]. In this research, we propose a series of

practical recursive patching algorithms to greatly reduce the
service bandwidth consumption yet support immediate on-
demand services. We start with a simple fixed threshold
starting rule. Then, we introduce the concept of the con-
trol window to regulate the merging schedule. Unlike con-
trolled multicast or other window-based patching optimiza-
tions, the dynamically calculated control window is deter-
mined only by the initial time of the stream. Therefore, no
parameter fine-tuning is involved.

The rest of the paper is organized as follows. The ba-
sic staring rule is proposed Section 2. The proposed re-
cursive patching algorithms are detailed in Section 3. The
promoting starting rule and limited buffer effect are studied
in Section 4. Performance comparisons between proposed
algorithms and graceful patching are presented in Section 5.
Finally, concluding remarks are given in Section 6.

2. STARTING RULES OF RECURSIVE PATCHING

Recursive patching adopts a receive-two model, where clients
can receive data from at most two streams simultaneously.
In such a system, the server bandwidth is multiplexed into
a set of logical channels, each of which is capable of trans-
mitting a video program at the playback rate. When a client
request arrives and there is a preceding stream of the same
content available, the client immediately plays the program
from a new stream while caching the subsequent part from
the preceding stream. After some time, the client starts con-
suming data from the buffer while receiving data from one
or two preceding streams to put into the buffer. From that
point, we say that the client request is successfully merged
into an earlier stream. The process can be done recursively
so that multiple streams can be merged to an existing ear-
lier stream. Therefore it is named recursive patching. Fig.1
shows a simple example of the recursive patching algorithm.
Note that stream A2 is extended from time 6 to time 12 due
to subsequent requests coming at time 5, 6 and 7.

In recursive patching, when a new client request arrives
at the server, a new stream x is initiated. The scheduler has
to decide whether stream x can be merged into an eligible

V - 8530-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

A1 A2 A3 A4 A5

1

3

2

0

1

2

3

4

5

6

7

8

9

10

11

12

5

1

4

6

1

7

2

8

1

9

2

3

A1(0, L)

A2(3, 12)

A3(4,5) A4(5,7) A5(6,9)

(a) (b)

Fig. 1. Recursive patching: (a) Merge tree representation,
and (b) time schedule.

preceding stream at some time in the future, or stream x is
scheduled as a full stream. Furthermore, if x can be inte-
grated into a service merge tree T (refer to Fig. 1 (a)), then
the algorithm should decide to which stream on tree T that
stream x should be connected. The first problem to resolve
is when to start a full stream (i.e. the starting rule). Here we
propose a simple starting rule as given below.

Fixed Threshold Starting Rule: If x is the very first
arrival in the system, a full stream is initiated. Otherwise, let
r denote the latest full stream, then a full stream is initiated
if and only if τ r

x − τ r
r > B, where τ r

x and τ r
r are the initial

times of x and r, B is the available client buffer space, and
L is the length of the video program served.

The above starting rule can be briefly explained as fol-
lows. Here, for simplicity, we use the same symbol to rep-
resent both the client and the multicast stream initiated for
that client. In order for stream x to finally merge with root
r at certain time t, x must have received the same data as
r at t. Since streams x and r have the same playback rate,
when the gap between them is greater than buffer B, x can
never accumulate enough data to “catch up” r before it ends.
Even though the fixed threshold starting rule is not optimal,
it does guarantee that any arrival τ r

x − τ r
r ≤ B can be suc-

cessfully merged into the merge tree rooted at r.
With this starting rule, we are left with the problem of

how to incorporate a new arrival into an existing service
merge tree. Assume that we have an existing service merge
tree Tn for arrivals x1, · · · , xn and would like to form a new
tree Tn+1 by incorporating a new arrival xn+1. Based on
the optimal merge tree property [5], we have the following
basic merging rule.

Basic Merging Rule: If x1 = s1, s2, · · · , sk = xn is
the right most branches of Tn, then Tn+1 = T i

n+1 for some
1 ≤ i ≤ k such that τ r

xn+1
< 2τ r

xn
− τ r

si−1
, where T i

n+1 is
defined to be the tree Tn+1 with si chosen as the parent of
xn+1.

3. RECURSIVE PATCHING ALGORITHMS

We propose several on-line recursive patching algorithms
adopting the fixed threshold starting rule and the basic merg-
ing rule in this section. To simplify the choice of the eligible
stream for a new stream to merge with, we introduce the no-
tion of control window, which specifies the range of future
arrivals that can merge with current streams. Let x represent
a stream with initial time τ r

x in the merge tree T . We asso-
ciate x with a control window (τ r

x , τw
x), which specifies that

any future stream that can merge with x must be initiated
before τw

x .

3.1. Greedy Recursive Patching

In the greedy recursive patching (GRP), the new arrival picks
the closest stream as its merging target. Obviously, the goal
of GRP is to make the length of the new stream as short
as possible. We define the cost of stream x, c(x), as the
length of the stream. The control window of GRP can be
calculated by the following proposition.

Proposition 1 Let x denote a stream in the merge tree
created by GRP, τ r

x denote the initial time of stream x. Then,
the control window of node x can be expressed as (τ r

x , τ r
x +

c(x)) using the greedy recursive patching (GRP).

3.2. Controlled Greedy Recursive Patching

GRP allows a new arrival to merge with its closest stream as
long as the stream is active upon the arrival of the request.
However, this merge may prolong the stream and increase
the overall cost of the merge tree significantly. We need to
tighten this condition a little bit. A stream is said reachable
to a new arrival x, if x can be merged with this stream before
the stream merges with one of its preceding streams. We add
this restriction to GRP call the result algorithm controlled
greedy recursive patching (CGRP) scheme.

Proposition 2 The control window of a non-root stream
x can be expressed as (τ r

x , τ r
x + c(x)

2), where τ r
x is the initial

time of x and c(x) is the cost of x. For the full streams, the
control window is (τ r

x , τ r
x +L), where L is the length of the

program.

3.3. Cost-aware Recursive Patching

In GRP and CGRP, a new stream is allowed to merge with
its closest preceding stream. This is based on one intuitive
assumption, i.e. to merge with the closest preceding stream
is the most desirable. However, this assumption may not al-
ways be true. Let x be the latest stream and p(x) the imme-
diate parent of x in the merge tree. For a new arrival y, the

greedy scheme is preferable only when τ r
y < τ r

x +
τr

x−τr
p(x)

2 .
This implies that it may be desirable to choose the control

window of a non-root stream x to be (τ r
x , τ r

x +
τr

x−τr
p(x)

2).

V - 854

➡ ➡

Although this choice does not guarantee the optimal perfor-
mance, it outperforms GRP and CGRP greatly in our ex-
periment. The result scheme is called cost-aware recursive
patching (CARP).

4. DESIGN ISSUES OF RECURSIVE PATCHING

4.1. Promoting Starting Rule

In the previous section, we assume that all window-controlled
algorithms follow the fixed threshold starting rule. How-
ever, this starting rule may cause the unwanted worst case
performance for certain incoming arrival distribution, i.e.
the uniform distribution with inter-arrival time equal to L/2.
To make the starting rule adaptive, we consider the follow-
ing modification.

Promoting rule: If x is the very first arrival in the sys-
tem, a full stream is initiated. Otherwise, if the addition of a
new arrival causes the cost of its ancestors to exceed that of
a full stream, then the latest such ancestor y and its subtree
are removed from the original tree to form a new tree T ′.
The node y is promoted to be the root of the new merge tree
T ′, and the length of the stream is extended to L.

It is desired that the stream being promoted, denoted as
y, is an immediate son of the original root r. Otherwise, the
prolonged transmission of the ancestors of y will be wasted
since now y can provide all necessary data segments for its
descendants, which were provided by the ancestors of y in
the original tree.

4.2. Effect of Limited Client Buffer

The client buffer is used to gap the distance between streams
that will finally merge together. Since a client may only
have a limited buffer, the recursive patching scheme should
adapt to this constraint. Let B denote the client buffer size.
For a stream x on a merge tree T rooted at r, define ∆τ =
τ r
x − τ r

r as the skew between the root and x. Then, we can
extend the original stream merge pattern to three different
patterns according to the relation between ∆τ and B. (1)
Head merge with ∆τ ≤ B. The client buffer is large enough
to hold the skew and the buffered content is the initial por-
tion of the video data. (2) Tail merge with ∆τ ≥ L − B.
The buffered content is the last portion of the video data and
the partial stream may finish later than the full stream. (3)
Bounded merge with B < ∆τ < L−B. The client buffer is
not large enough to hold the skew and there is a certain pe-
riod during which the client only receives from one stream.
The client buffer effect is studied in the next section.

5. EXPERIMENTAL RESULTS

We conducted experiments to compare the performance of
three recursive patching algorithms (i.e. GRP, CGRP and

CARP) with graceful patching (GP), which is one of the
best patching schemes also built on the receive-two model.
We use the mean service bandwidth required to support on-
demand services and the normalized number of requests 1

as the performance metric. A better scheme should require
less mean service bandwidth and support relative large nor-
malized number of requests at the same time.

Fig. 2 shows the performance of patching schemes un-
der different request inter-arrival time. The incoming re-
quests follow a Poisson distribution. CGRP and CARP con-
sistently outperform GP and GRP by a large margin. The
performance gap decreases with the increase of the inter-
arrival time. This is due to the increase in the non-overlapping
portion of requested streams. When the inter-arrival time is
large, each stream will deliver more data before it can be
merged to its precedents, which is proved by the drop in the
normalized number of requests in Fig. 2(b).

Fig. 3 illustrates the effect of the promoting rule on uni-
form arrivals with the inter-arrival time set to 1 second. The
schemes adopting the fixed threshold starting rule are de-
noted by an “F” suffix, while the schemes adopting the pro-
moting rule with a “P” suffix. We see that CARP-P con-
sistently outperforms CARP-F in the heavy load case. As
shown in Fig. 3, the curves of schemes adopting the promot-
ing rule is smoother than those schemes adopting the fixed
threshold starting rule, which indicates that the promoting
rule is actually a more dynamic rule with less fluctuation
under different system load.

Finally, we compare the proposed schemes with grace-
ful patching under the limited buffer constraint. We adopted
the fixed threshold starting rule for GRP and CGRP, and
chose the promoting rule for CARP, denoted as PR-CARP.
The incoming requests follow a Poisson distribution with
the mean inter-arrival time set to 10 seconds. As shown in
Fig. 4, the proposed recursive patching schemes outperform
graceful patching with a wide margin under a small client
buffer size (less than 60 seconds). Compared with other
three schemes, PR-CARP can merge the service streams
much more effectively with very limited client buffer space.

6. CONCLUSION

Three practical on-line recursive patching algorithms (i.e.
GRP, CGRP and CARP) were proposed in this research. It
was shown by simulation results that the proposed schemes
improved the performance of the traditional graceful patch-
ing scheme by a factor of 50%− 90%. Furthermore, CARP
with the promoting rule can successfully adapt to various
system load conditions without performance degradation.

1The normalized number of requests is the number of requests that can
be served by the bandwidth used to serve a single request using unicast
streaming method.

V - 855

➡ ➡

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

Mean�Interarrival�Time�(sec)

M
ea

n�
Se

rv
ic

e�
B

an
dw

id
th

�(
st

re
am

s)

GP GRP CGRP CARP

(a) Mean service bandwidth

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Mean�Interarrival�Time�(secs)

N
or

m
al

iz
ed

�N
o.

�o
f�
R

eq
ue

st

GP GRP CGRP CARP

(b) Normalized number of requests

Fig. 2. The effect of the mean inter-arrival time with Pois-
son distributed incoming requests.

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

No.�of�Requests

M
ea

n�
S
er

vi
ce

�B
an

dw
id

th
�(
st

re
am

s)

GRP-F CGRP-F CARP-F

GRP-P CGRP-P CARP-P

(a) Mean service bandwidth

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

No.�of�Requests

N
or

m
al

iz
ed

�N
o.

�o
f�
R

eq
ue

st
s

GRP-F CGRP-F CARP-F

GRP-P CGRP-P CARP-P

(b) Normalized number of requests

Fig. 3. The effect of the promoting rule on the uniform
distributed arrivals.

0

50

100

150

200

250

300

350

400

450

500

0 30 60 90 120 150 180 210 240 270

Client Buffer Size (sec)

M
ea

n
Se

rv
ic

e
B

an
dw

id
th

(s
tr
ea

m
s)

GP GRP CGRP PR-CARP

(a) the mean service bandwidth

0

10

20

30

40

50

60

0 30 60 90 120 150 180 210 240 270

Client Buffer Size (sec)

N
or

m
al

iz
ed

N
o.

of
R

eq
ue

st
s

GP GRP CGRP PR-CARP

(b) the normalized number of requests.

Fig. 4. The effect of the limited buffer constraint.

7. REFERENCES

[1] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multi-
cast technique for true video-on-demand services,” Pro-
ceedings of the sixth ACM international conference on
Multimedia, pp. 191–200, September 1998.

[2] Amotz Bar-Noy and Richard E. Ladner, “Competi-
tive on-line stream merging algorithms for media-on-
demand,” Proceedings of the Twelfth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 364–373,
January 2001.

[3] E. Coffman, J. Jelenkovic, and P. Momcilovic, “Prov-
ably efficient stream merging,” Proceedings of Sixth
lnternational Workshop on Web Caching and Content
Distribution, June 2001.

[4] W.T. Chan, T.W. Lam, H.F. Ting, and Prudence W.H.
Wong, “Improved on-line stream merging: from a re-
stricted to a general setting,” Proceedings of the 7th An-
nual International Computing and Combinatorics Con-
ference (COCOON), pp. 432–442, 2001.

[5] Z. Shi, “Theory and applications of bandwidth-efficient
scheduling for multicast on-demand services,” Ph.D
thesis, Department of Electrical Engineering-System,
USC, May 2002.

V - 856

➡ ➠

