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ABSTRACT

This paper describes an application of the Prototype-based Min-
imum Error Classification (PBMEC) to the offline recognition of
handwritten digits. The PBMEC uses a set of prototypes to repre-
sent each digit along with an Lν -norm of distances as the decod-
ing scheme. Optimization of the system is based on the Minimum
Classification Error (MCE) criterion. In this paper, we introduce
a new clustering criterion adapted to the PBMEC structure that
minimizes an Lν -norm-based distortion measure. The new clus-
tering algorithm can generate a smaller number of prototypes than
the standard k-means with no loss in accuracy. It is also shown
that the PBMEC trained with the MCE can achieve over 42% im-
provement from the baseline k-means process and requires only
28Kb storage to match the performance of a 1.46MB-sized k-NN
classifier.

1. INTRODUCTION

This paper describes an application of the Prototype-based Mini-
mum Error Classifier (PBMEC) [1] to the problem of handwritten
digits recognition. This paper is motivated by the desire to achieve
a lightweight but highly performing recognition system.

The primary goal of a pattern classification system is to achieve
the minimum error rate possible. The minimization of the proba-
bility of error is guaranteed by the Bayes theoretic decision, which
advocates choosing the class that yields the maximum posterior
probability of the class, given the incoming pattern. However,
incomplete knowledge of these probabilities precludes the direct
application of the Bayes decision scheme. Instead, the system de-
signer has to rely on indirect methods, such as assuming the form
of the distribution and estimating the parameters of the distribution
from available training data. However, this parametric approach is
a risky enterprise as the correct form of the distribution is rarely
known. An alternative solution is to bypass the parametric ap-
proach and use the entire training set as prototypic examples to
directly infer the Bayes decision boundaries: an incoming pattern
inherits the label of its closest neighbors in the training set. This
is the nearest-neighbor decision rule widely known under the k-
nearest neighbor (k-NN) instantiation [2]. In the k-NN classifier,
an incoming pattern inherits the label of the most representative
category among the k closest patterns in the training set.

The k-NN classifier is one the oldest classification techniques
widely utilized in various tasks, ranging from data-mining, prob-
ability estimation, and pattern classification. Its popularity is due
to solid theoretical results, i.e. the error rate of the k-NN clas-
sifier converges to the optimal error rate generated by the Bayes
classifier when both the number of training data N and the value
of k increase, and the ratio k/N approaches zero [2]. This con-
firms that the k-NN classifier can asymptotically approximate the
optimal classification decision. Even with a finite number of data,
the k-NN classifier has demonstrated very good performance on a
wide range of pattern classification tasks. However, because the k-
NN uses an entire training set as prototypes, it requires a large stor-
age space, thereby unlikely to be deployed in very small-footprint
systems.

Prototype-based systems attempt to improve the storage re-
quirement of the k-NN classifier while keeping comparable per-
formance. These approaches can be categorized into two groups:
prototype-selecting techniques and prototype-generating techniques.
Prototype selection chooses a subset of the training set by pruning
the data based on some heuristic to maintain the performance of
the system. The drop in accuracy is usually balanced by an op-
timized distance metric [3]. In contrast, the prototype-generating
scheme relies on a data clustering algorithm to compress the data
into fewer representatives, based on some distortion measures. As
distortion measures are not related to classification accuracy, these
prototypes can be further reshaped by discriminative training method-
ologies such as Learning Vector Quantization (LVQ) and other dis-
criminative training schemes [4].

The PBMEC, originally proposed for speech recognition tasks,
appears to be a valid alternative to the standard prototype-based
k-NN classifier in terms of performance, speed, and memory re-
quirement. The PBMEC is a prototype-generating classifier. How-
ever, unlike most nearest-neighbor classifiers, all prototypes in the
PBMEC belonging to the same classification category are partic-
ipants in the class-membership decision, through the use of dis-
crimination function. The discrimination function uses an Lν -
norm of distances, which weights the participation of each pro-
totype in the decision process. Tuning can be done to emulate the
nearest-neighbor classifier or to implement a more general deci-
sion scheme. The PBMEC operates two steps. First, a data clus-
tering technique, typically the k-means algorithm, is run to reduce
the data into a set of representatives. Second, the Minimum Classi-
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fication Error criterion (MCE) [5] is applied to re-adjust the proto-
types with the aim of achieving minimum error status. The MCE
criterion has been applied with great success to various speech-
related tasks [1] and to offline and online handwriting recognition
[6].

In this paper, we show the potential of the PBMEC to hand-
writing recognition and introduce a new clustering algorithm that
is more adapted to the functional form of the PBMEC decision
rule. The results show that 1) the nearest-neighbor decision rule is
not the optimal one in regard to performance; 2) the new clustering
algorithm outperforms the standard k-means; and 3) the MCE cri-
terion realizes a much smaller and more efficient recognizer than
the k-NN classifier.

2. PROTOTYPE-BASED MINIMUM ERROR
CLASSIFIER FOR CHARACTER RECOGNITION

The PBMEC is a distance-based classifier that uses the notion of
discrimination function to quantify the membership of an incom-
ing pattern to a specific category, where each category is repre-
sented by a set of prototypes. The original version of the PB-
MEC was used to classify variable-length patterns [1] and embe-
ded a Dynamic Programming procedure. A version of PBMEC
that deals with a fixed-length pattern as proposed in [7] is used in
this paper.

2.1. Recognizer structure

We are given a finite set of P character-classes, Cj , where 1 ≤
j ≤ P . The character-class Cj is represented by a the parameter
set λj = {rj ,m , Σj ,m }, where 1 ≤ m ≤ M . rj ,m represents
the m-th prototype of character-class Cj and Σj ,m is an adjustable
positive-definite matrix, typically initialized to be the covariance
matrix relative to the corresponding prototype. The number of
prototypes per character is M . We represent the overall system’s
parameters as Λ.

From a bitmap image, a feature extraction process generates
a feature vector x. Each character-class Cj uses a distance-based
discrimination function gj(x, Λ) which indicates the degree that x
belongs to the class and is defined as

gj(x, Λ) =

{
M∑

m=1

||x − rj ,m ||−ν

}− 1
ν

(1)

where ν is a positive constant. The discrimination function is an
Lν -norm of distances between the pattern x and the prototypes
rj ,m. Any suitable distance can be used. In this paper, we use the
Mahalonobis (or weighted) distance defined as

||x − rj ,m || = (x − rj ,m )T (Σj ,m )−1(x − rj ,m ) (2)

which reduces to the Euclidean distance when Σj ,m is the unity
matrix.

The final decoding is done by the simple classification rule:

x ∈ Ci if i = argmin
j

gj(x, Λ) (3)

which chooses the character that yields the smallest value of the
discrimination function.

Eq. (1) shows that the contribution of each prototype to the
discrimination function is modulated by the parameter ν with the
property that

lim
ν→∞

gj(x, Λ) = min
m

||x − rj ,m ||. (4)

For ν large, the discrimination function is the smallest of the dis-
tances, meaning that the pattern x inherits the label of the closest
prototype. This is the nearest-neighbor rule. Thus, the tuning of
ν enables the emulation of various decision rules, making the PB-
MEC a generalization of various classifier structures.

3. PBMEC TRAINING

PBMEC training is done in two stages: an initialization stage which
performs a clustering algorithm on a class-by-class basis to gener-
ate a set of prototypes representing each class, followed by the
MCE training process that re-adjusts the prototypes for better per-
formance.

3.1. Lν -norm-based k-means initialization

The initialization process is typically done by the k-means cluster-
ing algorithm which minimizes the total distortion over the train-
ing data representing the class.

Let {xj
1,x

j
2, ...,x

j
N} be the set of training data of class Cj .

For a pre-chosen number of clusters M , the k-means algorithm
iteratively adjusts the centroid of each cluster, by a within-cluster
averaging process which minimizes the distortion D defined as

D =

N∑
n=1

min
m

||xj
n − rj ,m ||. (5)

For each pattern x there is a unique prototype yielding the min-
imum distance, meaning that the k-means clustering generates a
disjoint set of clusters with well defined boundaries.

The k-means algorithm has been the standard clustering al-
gorithm in the PBMEC until now. There is, however, an obvious
inconsistency: the metric used in Eq. (5) is not matched to the
Lν -norm metric used in the PBMEC classification process. This
creates a discrepancy between the k-means-based training phase
and the testing phase, especially when training is done by k-means
clustering.

In light of this, we introduce an Lν -norm-based k-means al-
gorithm, referred to as Lν -k-means, which is adapted to the PB-
MEC situation. The Lν -k-means minimizes the following distor-
tion measure:

Dν =

N∑
n=1

{
M∑

m=1

||xj
n − rj ,m ||−ν

}− 1
ν

. (6)

Dν uses a similar metric to one used in the PBMEC’s discrimina-
tion function and is a generalization of the nearest-neighbor-based
metric used in the classical k-means algorithm. It operates in a
manner similar to fuzzy k-means algorithms as each input pattern
is not assigned to a single cluster defined by a single centroid, but
distances to all centroids are taken into account in the computation
of the distortion. It is clear from Eq. 4 that

lim
ν→∞

Dν = D (7)
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meaning that for large ν, the Lν -k-means algorithm is equivalent
to the classical k-means algorithm.

3.2. MCE Training

From the prototypes generated by the Lν -k-means clustering pro-
cess, the MCE training is run to generate better performing proto-
types. The MCE algorithm [5] adjusts the parameters of the system
so as to minimize an expected lossL(Λ) which is a reflection of the
classification error and is defined as L(Λ) = Ex(�i(x, Λ)). The
loss �i(x, Λ) is a function of a misclassification measure di(x, Λ)
for training sample x ∈ Ci given the set of parameters Λ:

�i(x, Λ) = σ(di(x, Λ)) (8)

where σ(·) is a smooth approximation of the step-wise 0-1 func-
tion, which is equal to one for positive values and zero otherwise.
The misclassification measure di(x, Λ) is defined as:

di(x, Λ) = gi(x, Λ) −
⎡
⎣ 1

P − 1

P∑
j=1,j �=i

gj(x, Λ)−η

⎤
⎦

− 1
η

(9)

where η is a positive number which controls the degree of con-
tribution of competing categories. The misclassification measure
emulates the classification decision in scalar value: a positive sign
implies an incorrect decision and a negative sign implies a correct
decision. For a very large η, the misclassification error is approxi-
mated to a difference in score between the best incorrect category
and the true category.

L(Λ) can be minimized by a gradient-based optimization tech-
niques such as Generalized Probabilistic Descent (GPD) [5] or
the approximated Newton-based optimization known as Quick-
prop [8].

4. EXPERIMENTAL RESULTS

We performed several experiments to evaluate the performance of
the PBMEC training algorithms. The baseline systems are the
standard k-means clustering technique and the popular k-NN clas-
sifier. The task chosen for the evaluation is the classification of off-
line unconstrained-style handwritten digits. The database used is
the UNIPEN online handwriting database [9]. We generated char-
acter images out of the given dynamic information of handwritten
strokes. The training set is composed of 15,953 handwritten digits
from Train-R01/V07 category 1a subset. Testing is done on the
corresponding DevTest-R01/V02 1a subset which contains 8,598
samples. The 24-dimensional Discrete Cosine Transform (DCT)
feature vector was extracted from the 22×30-pixel character im-
age.

4.1. Lν -norm contribution

The first experiment was carried out to determine the contribution
of the Lν -norm-based metric to the performance of the system or
equivalently which value of ν yields the optimum performance.
This study was done using the standard k-means training process
based on the Euclidean distance measure at the fine-grained level.
Various classifier structures were generated by varying the number
of prototypes per class.

Fig. 1 shows the performance for various classifier structures.
It is clear that the optimal Lν -norm distance (obtained for ν be-
tween 2 and 5) is independent of the number of prototypes per
class. Keeping in mind that a large ν implements the nearest-
neighbor rule, the results suggest that the classical use of the nearest-
neighbor rule, which represents each category by its closest repre-
sentative is not optimal. The degree of fuzziness introduced by the
use of the relatively small value of ν in the Lν -norm of distances
yields better performance.
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Fig. 1. Recognition rate on the test set versus the value of
the value of ν for various classifier structures

4.2. k-means and Lν -norm-based k-means

Further experiments were performed to evaluate the performance
of the Lν -k-means clustering algorithm. The algorithm was run
from the k-means-generated prototypes using a gradient-based min-
imization scheme. Figure 2 shows the best performance on the test
set, using the Euclidean distance at the fine-grained level, versus
the number of prototypes per class.
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Fig. 2. Comparison of the k-means algorithm and the pro-
posed Lν-k-means in terms of performance.

From the results, it is obvious that the Lν -k-means algorithm
performs better than classical k-means algorithm, especially when
using a fewer number of prototypes per class: 15% relative im-
provement from the k-means configuration are achieved in the
context of 15 prototypes per class but only 5% relative improve-
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ment is realized when using 60 prototypes per class. Also the Lν -
k-means can generate a more compact system: a system with 10
prototypes per class generated by the k-means-Lν algorithm gives
similar performance to a system with 30 prototypes per class gen-
erated with the classical k-means algorithm.

4.3. Performance of MCE training

A series of experiments was carried out to evaluate the perfor-
mance of MCE training. Subsequent goals were to study the effect
of different distances on MCE and to determine which parameter
training yields the best performance. When using the Mahalono-
bis distance, the parameters that can be trained by MCE are the
prototypes rj ,m and covariance matrices Σj ,m (or their inverse
which are referred to as weights) whereas only the prototypes are
trained when using the Euclidean distance. These parameters were
initialized by the Lν -k-means clustering process. Parameter up-
dates in MCE training were carried out for 80 iterations using the
Quickprop algorithm. The value of η was set to 20 and empirically
determined.

85

86

87

88

89

90

91

92

93

94

95

0 5 10 15 20 25 30 35 40 45 50 55 60

Number of Prototypes

R
ec

o
g

n
it

io
n

 R
a

te
s 

(%
)

Initialized prototypes -- Euclidean Distance
Initialized prototypes -- Weighted Distance
MCE -- Euclidean Distance
MCE -- Weighted Distance (Prot & Wght Optimization)
MCE -- Weighted Distance (Prot Optimization)
MCE -- Weighted Distance (Wght Optimization)

Fig. 3. Performance of MCE on the test set using various
distance measures and various parameters training.

The results in Fig. 3 show the best performance of MCE train-
ing on the test set versus the number of prototypes for various
distance measures and various configurations. When using Ma-
halonobis distance, even though prototype optimization is more
effective than weight optimization, the best result is achieved when
both prototypes and weights are updated at the same time. In
MCE training, the Euclidean distance is still more efficient than
weighted distance. The best result achieved by MCE training gives
the recognition rate of 94.69%, which is equivalent to a 42% rela-
tive error reduction from the Lν -k-means’s performance.

A k-NN classifier on the same training and testing data achieves
94.39%. This result was achieved at the cost of a 1.46MB re-
quired storage for the prototypes whereas the PBMEC only re-
quires 28Kb. Clearly, the PBMEC training approach together with
our proposed techniques are obviously more powerful and com-
pact and more suitable to be deployed in the system with limited
resources.

5. CONCLUSIONS

This paper has described an application of the Prototype-based
Minimum Classification Error classifier to the task of recogniz-
ing unconstrained-style handwritten digits. Experimental inves-
tigation shows that the nearest-neighbor rule is not optimal. A
new clustering criterion, introduced to generate prototypes based
on an Lν -norm of distances, results in a smaller and more effi-
cient system than the classical k-means algorithm. Training with
the MCE criterion generates a much smaller system than k-NN
classifier without any drop in accuracy.
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