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ABSTRACT

This paper introduces a multi-rate hidden Markov model (multi-
rate HMM) for multi-scale stochastic modeling of non-stationary
processes. The multi-rate HMM decomposes the process variabil-
ity into scale-based components, and characterizes both the intra-
scale temporal evolution of the process and the inter-scale inter-
actions. Applying these models to the machine tool-wear classi-
fication problem in a titanium milling task shows that multi-rate
HMMs outperform HMMs in terms of both accuracy and confi-
dence of predictions.

1. INTRODUCTION

Automatic detection of tool wear in metal cutting operations is an
important industrial problem, and losses due to undetected worn
tools can be very costly. Common industrial practice of replac-
ing at regular intervals can be ineffective and inefficient due to the
wide variations in a cutter’s lifetime. Therefore, automatic wear
prediction systems that can reliably operate across a variety of cut-
ters and cutting conditions are of practical importance.

Direct measurement of physical wear amount on cutting edges
is difficult to obtain during cutting, and tool-wear monitoring sys-
tems rely on sensory signals measured from the cutting process
to predict wear amount using a statistical classifier. Wear pro-
gression is a dynamic process, and the importance of temporal
information for wear prediction has been demonstrated in previ-
ous work, where hidden Markov models (HMMs) were used for
modeling both gross characteristics of wear over multiple cutting
passes [10, 8] and structure of short-term transients at the millisec-
ond level [16]. However, an HMM models stochastic processes
evolving at only one time scale, with limited ability to represent
long-term context. Hence, HMMs are not well suited for model-
ing the wear process for tasks involving materials such as titanium,
which exhibit long-term dependence and multi-scale dynamics. In
titanium milling, cutters experience cycles of welding and release
of titanium to cutting edges, and the time-frequency structure of
associated machining vibrations and transients differ considerably
from those in the absence of such cycles.

In this work, we introduce multi-rate HMMs for multi-scale
stochastic modeling of non-stationary processes, and apply them
to the tool-wear monitoring problem. Multi-rate HMMs are a
generalization of HMMs in that multiple state and observation
sequences are used to represent temporal and observational vari-
ability, respectively, at multiple time scales. Scales are organized
in a hierarchical manner from coarse to fine, allowing for effi-
cient representation of both short- and long-term context simul-

taneously. While the tree-structured dependencies across scales
characterize the coarse-to-fine inter-scale dynamics, statistical de-
pendencies across time characterize the intra-scale temporal evo-
lution within each scale-based part.

The benefit of modeling of the wear process at multiple time
scales through multi-rate HMMs is three fold. First, machining
vibrations have both short- and long-term characteristics, and the
multi-rate HMM can provide a more accurate description of the
wear process by multi-scale modeling. Second, tool-wear system
design is constrained by the high costs of data collection, so the
amount of training data available for parameter estimation is lim-
ited. In this case, using the parsimonious representation of the
multi-rate HMM is a key advantage. Third, the classifier confi-
dence is an important consideration in tool-wear monitoring sys-
tems, where they are used as an indicator by a human operator, not
as a decision maker. The multi-rate HMM classifiers potentially
have better confidences, because the wear process model does not
make over-simplistic assumptions or introduce any redundant in-
formation via over-sampling of multi-scale observation sequences.

In the following sections, we provide a discussion of HMMs
and their use in tool-wear monitoring as well as their limitations
for stochastic modeling of multi-scale processes. The multi-rate
HMM extension, with inference and estimation algorithms, is de-
scribed next, with experimental results comparing HMMs and multi-
rate HMMs in a titanium milling task.

2. HIDDEN MARKOV MODEL

An HMM characterizes the joint distribution of a length T time se-
ries, {ot}, called observations, through an underlying hidden state
sequence, {st},

p({ot}, {st}) ≡
T−1∏
t=0

p(st|st−1)p(ot|st)

in which it is assumed that the state sequence is first-order Markov,
s−1 is a null start state, and observations are conditionally in-
dependent of everything else given their respective states [15].
Roughly speaking, non-stationary behavior of the time evolution
is captured by the discrete state sequence, while the consecutive
observations produced by the same state captures piecewise sta-
tionarity. The HMM’s independence assumptions can be exploited
to construct a computationally efficient O(TN2) probabilistic in-
ference algorithm, N denoting the state space cardinality.

The HMM has been used to model non-stationary phenomena
ranging from weather patterns to speech acoustics. HMMs have
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also been proposed for milling [16, 14, 8], drilling [10, 5], and
turning [18]. The deficiency of HMMs for capturing both short-
and long-term dynamics for titanium milling has been noted in [14]
where ambiguity plane features (a type of time-frequency analysis)
were used for capturing local feature dynamics.

Even though the HMM’s conditional independence assump-
tions produce a simple yet powerful model with an efficient in-
ference algorithm, those assumptions also restrict the phenomena
that can be parsimoniously represented by the HMMs. First, the
assumption that observations are conditionally independent given
the hidden state sequence rarely holds, and the state-based depen-
dence is weak. Information between the past and present obser-
vations as represented by an HMM decays to zero exponentially
fast as the time lag between them increases, due to the underlying
Markov chain structure [1]. Though structural constraints in the
HMM’s state topology can be used to propagate long-term context
information to some degree, this approach is not very effective
for long observation sequences. Second, an HMM represents the
process state with a single state variable and enforces synchrony in
state transitions associated with different components of the obser-
vation vector. Many processes consist of multiple interacting parts,
each of which might evolve at a different time scale. Representa-
tion of composite state structures by an HMM requires assigning a
unique state to each possible composite state configuration, result-
ing in an exponential state space which increases both the com-
putational cost of inference and the number of free parameters.
Moreover, representation of multi-scale observation sequences by
a single observation sequence requires over-sampling of coarser-
scale observation sequences to make them synchronous with finer
scale observation sequences, resulting in artificially skewed class
posterior estimates and over-confident classification decisions due
to counting the same evidence multiple times.

3. MULTI-RATE HIDDEN MARKOV MODEL

3.1. Model Assumptions

The multi-rate HMM is a generalization of the HMM to multiple
time scales. The process state is factored into scale-based com-
ponents, with multiple observation sequences each of which is at
a particular resolution of time. In a K-rate HMM, the process is
modeled at K time scales, and associated with each scale is a hid-
den state sequence, {sk

tk
}, and an observation sequence, {ok

tk
},

k denoting the scale level. Scales are organized in a hierarchi-
cal manner from the coarsest k = 1 to the finest k = K, and
the k-th scale is Mk times faster than the (k − 1)-th scale, i.e.
Tk = MkTk−1 for k > 1 where Tk denotes the length of observa-
tion sequence associated with the k-th scale. A multi-rate HMM
characterizes both the time evolution within each scale-based part
and the interactions among them. The joint distribution of state
and observation sequences is modeled as,

p({o1
t1}, {s1

t1}, . . . , {oK
tK

}, {sK
tK

}) ≡
K∏

k=1

Tk−1∏
tk=0

p(sk
tk
|sk

tk−1, s
k−1
�tk/Mk�)p(ok

tk
|sk

tk
) (1)

where sk
−1 is a null start state for the k-th scale, �x� denotes the

greatest integer less than or equal to x and hence �tk/Mk� is the
index of the time frame in the (k − 1)-th scale covering the tk-th
observation in the k-th scale. A graphical model illustration of the
multi-rate HMM is in Figure 1.

Fig. 1. Graphical model illustration of a multi-rate HMM with
K = 2 and M2 = 3, with the coarse scale at the top. States and
observations are depicted as circles and squares, respectively.

In the multi-rate HMM, statistical dependencies across time
characterize the temporal dynamics of the scale-based components,
whereas the hierarchical dependencies across scale characterize
the interaction between the components. Dependencies across time
are first-order Markov; those across scale are tree structured. The
K-rate HMM essentially involves K multi-length HMMs, which
are coupled via dependency of state transitions at one scale on the
overlapping state variable at the next higher scale. Notice that
dropping sk−1

�tk/Mk� from the right hand side of the first term in
Equation 1 would render the pairs of scale-based observation and
state sequences independent of each other.

The use of a factored state representation in which different
components can change their states at different time scales amelio-
rates the representation of context problem. Coarser scale state and
observation sequences provide long-term context information to
finer scale ones characterizing short-term behavior. State and ob-
servation factoring is also used in variations of HMMs for single-
rate processes, including factorial HMMs [9], mixed memory mod-
els [17] and coupled HMMs [2, 13], in part to reduce the number
of free parameters (for more robust estimation) and in part to al-
low asynchrony between state processes associated with different
observation streams. The multi-rate state factoring benefits from
these advantages, but also is better suited for modeling long-term
context and reducing feature redundancy.

Two-dimensional multi-resolution HMMs [11] and hierarchi-
cal HMMs [6] are examples of multi-scale models involving scale-
based state and observation sequences. Like the multi-rate HMM,
these models use tree-structured coarse-to-fine dependencies to
characterize inter-scale dependencies, but they are more restrictive
in terms of the assumptions they make: state and observation vari-
ables at a given scale are conditionally independent of their distant
relatives given their parent or ancestor state variables, and the state
sequence at a given scale is disconnected and not a Markov chain.

3.2. Probabilistic Inference

The state sequences, {sk
tk
}, are hidden, so they must be marginal-

ized out when evaluating models against data. The parameter es-
timation of multi-rate HMMs require the a posteriori probabilities
of states given observations. The calculation of these and other
quantities by brute force summation of Equation 1 is prohibitively
expensive, but they can be efficiently calculated via a generaliza-
tion of the HMM forward-backward algorithm to the multi-rate
HMM. The algorithm exploits Markov independence relationships
of the multi-rate HMM to calculate hidden state posteriors given
all observation sequences. Forward and backward steps recur-
sively calculate the conditional probability of the current states
given past observations, and the conditional probability of future
observations given current states, respectively, which are recom-
bined to obtain hidden state posterior probabilities. For a K-rate
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HMM, the overall computational cost of the resulting procedure
is O(TKNK+1). On the other hand, collapsing multiple state
components into a single state variable and invoking the HMM
forward-backward algorithm directly leads to a O(TKN2K) algo-
rithm, which is exponentially worse. See [3] for details.

3.3. Parameter Estimation

Parameters of the multi-rate HMM consist of the initial state and
state transition distributions, and the state-conditional output dis-
tributions. In this work, we use mixtures of multivariate Gaussian
densities to model output distributions.

Since states are never observed, maximum likelihood estima-
tion of the multi-rate HMM parameters using training data O re-
quires the optimization of the marginal log-likelihood function,
log p(O), which is mathematically intractable. Instead, we use
the expectation-maximization (EM) algorithm [4] to maximize it
iteratively. The EM algorithm replaces the incomplete data like-
lihood function by the complete data one, log p(O,S), averaged
over all possible state completions S, each of which is weighted by
the a posteriori probability of the corresponding state completion.
At the n-th iteration, parameters are updated according to

θ(n+1) = argmax
θ

ES|O
[
log pθ(S,O)|O, θ(n)

]
,

where θ(n) denotes the parameter estimate at the n-th iteration.
This maximization problem can be solved analytically to give ex-
plicit parameter updates for initial state and state transition distri-
butions, and for mixture weights, means and covariances associ-
ated with the state-conditional output densities. See [3] for details.

4. EXPERIMENTS

4.1. Task

The task is the prediction of the amount of wear on 1/2′′ end-
mills milling titanium. The data is collected as follows. A sharp
tool has been used to climb-cut notches in titanium blocks for
multiple cutting passes until it becomes worn. An accelerome-
ter mounted on the front plate of the spindle housing is used to
record wide-band machining vibrations. At the end of selected
cutting passes, a human operator measures the amount of wear on
cutting edges. Quantizing these measurements, we label a cutter
at the early stages of its lifetime as “A”, a partially worn but still
usable one is labeled as “B”, and a dull one is labeled as “C”. The
assumption that wear level does not decrease over time is made to
infer the state of wear on some unlabeled passes, which are also
regarded as labeled in the experiments. The data set consists of
15 tools with a total of 145 cutting passes, of which 81 are la-
beled. Independent training and testing sets are constructed, and
the training data set is used in three-way cross validation (CV) for
development purposes.

4.2. Signal Processing

To capture transients and other short-term events, a sequence of
cepstral feature vectors concurrent with flute rotations are derived
(each cutting tool has four flutes). At every flute period, 20 cepstral
coefficients are computed, based on a 25-th order linear prediction
analysis with a 10% window overlap [19]. Out of 20 coefficients,
only the 1-st, 4-th, 5-th, and 6-th are kept, as they were found to

have significantly higher discriminatory information based on the
scatter ratio of features coming from sharp and worn passes. To
minimize accelerometer placement effects [7], cepstral mean sub-
traction has been applied on a tool-by-tool basis similar to channel
compensation in speech recognition. To capture long-term char-
acteristics, a 40-frame average of the original cepstral features has
been taken. Averaging windows are non-overlapping, and hence
the averaged feature sequence is 40 times slower than the original
one. We refer to the original cepstral features and their averages as
short- and long-term features, respectively.

4.3. Training and Classification

The wear dynamics during a tool’s lifetime was modeled both
across multiple passing passes and within a cutting pass. The
changes in cutter wear level from one cutting pass to another were
modeled by a three-state HMM, where states represented wear
levels and only transitions to the same or higher wear levels are
allowed. Wear dynamics within a cutting pass were modeled ei-
ther by HMMs or multi-rate HMMs characterizing the statistics of
cepstral features under different amounts of wear. Ergodic state
topologies were selected based on pilot experiments and the ab-
sence of prior knowledge suggesting otherwise. The optimal num-
ber of states and number of Gaussian mixtures per state were deter-
mined via CV. All system parameters were jointly estimated using
the EM algorithm, which automatically deals with unlabeled cut-
ting passes and hidden states in both HMMs and multi-rate HMMs.

During testing a cutting pass is classified according to the Bayes
decision rule conditional on tool’s whole cutting history. Previous
work [8] found that a second stage classifier, generalized linear
model (GLM), improves on the class a posteriori probability esti-
mates and is also employed in this work. The GLM parameters
are estimated from the training data via CV, using the iterative
re-weighted least squares algorithm [12]. A GLM also provides
a convenient framework for classifier combination taking log-odd
ratios from multiple systems as input.

4.4. Results

We evaluated the 2-rate HMM using short- and long-term fea-
tures against four HMM systems: HMM systems using short- and
long-term features, an HMM system using concatenated short- and
long-term features, and the classifier combination of the two HMM
systems using short- and long-term features via a GLM. In the fea-
ture concatenation approach, long-term features are over-sampled
to make them synchronous with the short-term ones.

In addition to 3-level classification accuracy, models are eval-
uated according to the normalized cross-entropy (NCE) metric,

NCE ≡ H(C) − H(C|X)

H(C)
,

for predicting class C using features X , where H(C|X) and H(C)
are the (cross-)entropy functions for the a posteriori and a priori
class probabilities averaged with respect to the empirical test data
distribution. NCE measures the information that is existent in fea-
tures X relevant for predicting C as represented by the assumed
model. Using the prior as a classifier results in an NCE of 0; 1 is
a perfect score; and highly confident incorrect classification deci-
sions result in negative NCE. NCE is a useful metric here in that it
is more sensitive than accuracy given limited test data.
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Table 1. Multi-level wear classification error rate (err) and NCE
(nce) results for the HMM with short-term features (HMM-F),
with long-term features (HMM-C), with concatenated long- and
short-term features (HMM-CF), for the classifier combination of
HMM-C and HMM-F, and for the 2-rate HMM (MHMM) systems
on the test set.

Model err % nce

HMM-F 43 -0.54
HMM-C 43 -2.91
HMM-CF 43 -2.69
HMM-C+F 45 -6.85
MHMM 33 0.23

The multi-level classification error rates and NCE values for
the HMM and multi-rate HMM classifiers in the test set are re-
ported in Table 1. The a priori classifier assigning all cutting
passes to the wear level having the highest frequency in the train-
ing data set has an error rate of 66%. All classification accuracies
reported in Table 1 are statistically different from the a priori clas-
sifier at the significance level p < 0.01. The classification error
rates of all HMM systems are similar, but the one using short-term
features performs significantly better than the others in terms of
NCE. Both the HMM with feature concatenation and the classifier
combination approach fail to integrate information from short- and
long-term features. The large negative NCE associated with the
feature concatenation approach confirms our hypothesis that over-
sampling results in over-confident classifiers. The 2-rate HMM
successfully uses the information available in the combination of
short- and long-term features to improve on accuracy and confi-
dence estimation. While the error rate differences are not statis-
tically significant due to the small test set size (p = 0.14), the
NCE differences are reasonably significant (p = 0.06), compared
to using the HMM with short-term features.

Experiments with different averaging window sizes and fea-
ture extraction schemes for short- and long-term features give sim-
ilar results.

5. SUMMARY

In this paper we introduce the multi-rate HMM for multi-scale
modeling and apply it to the classification of titanium milling tool
wear. The multi-rate HMM is a generalization of the standard
HMM framework to multiple time scales, where variability is de-
composed into scale-based components, and multiple state and ob-
servation sequences are used to represent process state and obser-
vational variability at different time scales. Results in a titanium
milling tool-wear classification task show the utility of multi-rate
HMMs for modeling wear dynamics.
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