
GAS IDENTIFICATION WITH MICROELECTRONIC GAS SENSOR IN PRESENCE OF
DRIFT USING ROBUST GMM

Sofiane Brahim-Belhouari, Amine Bermak and Philip C. H. Chan

Hong Kong University of Science and Technology,
Electrical and Electronic Engineering Department

Clear Water Bay, Kowloon, Hong Kong, SAR.

ABSTRACT

The pattern recognition problem for real life applications of
gas identification is particularly challenging due to the small
amount of data available and the temporal variability of the
instrument mainly caused by drift. In this paper we present a
gas identification approach based on class-conditional den-
sity estimation using Gaussian mixture models (GMM). A
drift counteraction approach based on extracting robust fea-
ture using a simulated drift is proposed. The performance
of the retrained GMM shows the effectiveness of the new
approach in improving the classification performance in the
presence of artificial drift.

1. INTRODUCTION
Gas identification on a real-time basis is very critical for a
very wide range of applications in the civil and military en-
vironments. The past decade has seen a significant increase
in the application of multi-sensor arrays to gas classification
and quantification. Most of this work has been focused on
systems using microelectronic gas sensors featuring small
size and low-cost fabrication, making them attractive for
consumer applications. A number of interesting applica-
tions have also emerged in the last decade whether related
to hazard detection, poisonous and dangerous gases or to
quality and environmental applications such as air quality
control. Furthermore, in the next decade, increased interest
in mass production of reliable microelectronic gas sensors
is expected in automation process manufacturing as well as
in the automotive industry as recent requirements for active
protection of passengers in vehicles from inherent pollutants
are being introduced. Unfortunately, the present gas sensors
have a lack of selectivity and therefore respond similarly to
a wide variety of gases. Figure 1 illustrates an example of a
microelectronic gas sensor’s response to carbon monoxide
CO, with 4 different concentrations of methane CH�. It
can be shown from this simple illustration that differentCO
concentrations may result in similar voltages at the output of
the sensor depending on the concentration of the interfering
gas. This makes the problem of detecting and further quan-
tifying a gas mixture a challenging task.
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Fig. 1. Sensor responses as a function of CO concentration for different
concentrations of CH� .

The idea to combine an array of sensors with a pattern
recognition algorithm to improve the selectivity of the sin-
gle gas sensor has been widely accepted and being used by
researchers in this field. In fact, an array of different gas
sensors is used to generate a unique signature for each gas.
After a preprocessing stage, the resulting feature vector is
used to solve a given classification problem, which consists
of identifying an unknown sample as one from a set of pre-
viously learned gases. Significant research work has been
carried out during the last decade in gas detection, prepro-
cessing algorithms as well as pattern recognition classifica-
tion [1] [2]. Unfortunately, the relative success of gas iden-
tification systems using the pattern recognition algorithms
is primarily based upon laboratory measurements in well-
controlled environments. Among the most serious limita-
tion of actual gas classification and quantification systems
is the inherent drift of gas sensors, which shows significant
temporal variations of the sensor response when exposed
to identical atmospheres. These drifts are due to unknown
dynamic processes in the sensor system (e.g. poisoning or
ageing of sensors) or environmental changes (e.g. tempera-
ture and pressure conditions). As a result of drift, the clus-
ter distribution in the feature space becomes unstable over
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time, making useless the decision surface built by the classi-
fier during the training phase. Therefore, after certain time,
drift impairs the pattern recognition ability of the system,
which needs to be completely retrained.

In this paper we will present a gas classification ap-
proach based on class-conditional density estimation using
Gaussian mixture models (GMM). The proposed classifier
is found to outperform both Multi Layer Perceptron (MLP)
and K Nearest Neighbors (KNN). A drift counteraction ap-
proach based on extending the training data set using a sim-
ulated drift is proposed. The performance of the retrained
GMM shows the effectiveness of the new approach in im-
proving the classification performance in the presence of ad-
ditive as well as multiplicative drift. Section 2 of the paper
briefly presents the theoretical background of GMM classi-
fier. Section 3 describes the classification results with and
without drift using GMM classifier. This section also de-
scribes the experimental set-up used to sample the data from
the microelectronic gas sensor array. Section 4 concludes
the paper.

2. GAUSSIAN MIXTURE MODELS
The objective of pattern recognition is to set a decision rule,
which optimally partitions the data space into c regions, one
for each class Ck . A pattern classifier generates a class la-
bel for an unknown feature vector x � Rd from a discrete
set of previously learned classes. The most general classi-
fication approach is to use the posterior probability of class
membership ��Ckjx�. To minimize the probability of mis-
classification one should consider the maximum a posterior
rule and assign x to class C�k:

C�k � argmax
k

���Ckjx�� � argmax
k

���xjCk���Ck�� (1)

where ��xjCk� is the class-conditional density and ��Ck�
is the prior probability. In the absence of prior knowledge,
��Ck� can be approximated by the relative frequency of ex-
amples in the dataset. One way to build a classifier is to
estimate the class-conditional densities by using represen-
tation models for how each pattern class populates the fea-
ture space. In this approach, classifier systems are built by
considering each of the class in turn, and estimating the cor-
responding class-conditional densities ��xjCk� from data.
The most widely used method of nonparametric density es-
timation is the K Nearest Neighbors (KNN). Despite the
simplicity of the algorithm, it often performs very well and
is an important benchmark method. However, one draw-
back of KNN is that all the training data must be stored, and
a large amount of processing is needed to evaluate the den-
sity for a new input pattern. An alternative is to combine
the advantages of both parametric and nonparametric meth-
ods, by allowing a very general class of functional forms in
which the number of adaptive parameters can be increased
to build more flexible models. This leads us to a powerful

technique for density estimation, called mixture model [3].
In our work we focus on semiparametric models based on
Gaussian mixture distributions.
In a Gaussian mixture model, a probability density function
is expressed as a linear combination of basis functions. A
model with M components is decribed as mixture distribu-
tion [3]:

��x� �
MX

j��

��j���xjj� (2)

where ��j� are the mixing coefficients and the parameters
of the component density functions��xjj� vary with j. Each
mixture component is defined by a Gaussian parametric dis-
tribution in d dimensional space:

��xjj� �
�

����d��j�j j���
expf�

�

�
�x� �j�

�
�
��

j �x� �j�g

The parameters to be estimated are the mixing coefficients
��j�, the covariance matrix �j and the mean vector �j .
The method for training mixture model is based on maxi-
mizing the data likelihood. The log likelihood of the dataset
�x�� ����xn�, which is treated as an error, is defined by:

l �

nX

i��

log��xi� (3)

A specialized method is commonly used to produce opti-
mum parameters, known as the expectation-maximisation
(EM) algorithm [4].

3. EXPERIMENTAL RESULTS
3.1. Data Description
Measurements have been done using an experimental setup
consisting of a special sensor chamber equipped with gas
pumps and mass flow controllers as well as a data acqui-
sition board (Figure 2). The sensor array composed of 8
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Fig. 2. Scheme of the experimental setup. MFC stands for Mass Flow
Controller.

micro-hotplate based SnO� thin film gas sensors, have been
used [5]. Four sensors with Pt/SnO� sensing film, two with
Au/SnO� sensing film and the other two with Pt/Cu(0.16
wt%)-SnO�. The sensors’ operating temperature was cho-
sen to be ���oC for the purpose of good sensitivity to the
studied gases. The sensors output are raw voltage measure-
ments in the form of exponential-like curves, as shown in
Figure 3. Gases used in the experiment are methane, car-
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Fig. 3. Raw response of an array of 8 microelectronic gas sensors.

bon monoxide, hydrogen, and two binary mixtures: one of
methane and carbon monoxide and another of hydrogen and
carbon monoxide. Vapors were injected into the gas cham-
ber at a flow rate determined by the mass flow controllers
(MFC). Concentration ranges are reported in Table 1. The

Gas Concentration range (ppm)
CO 25-200
CH� 500-4000
CO & CH� 25-200 & 500-4000
H� 500-2000
CO & H� 25-200 & 500-2000

Table 1. Gases and their concentration ranges.

steady state values of the array sensor were recorded while
periodically injecting different gases. A gas data set of 220
examples was created to evaluate the performance of differ-
ent pattern recognition systems. Each example consists of 8
sensor transients, with i � �� ���� NT samples per transient
denoted by v�ti�. We subtracted the baseline of each sen-
sor in order to reduce the effects of the additive sensor drift.
Since our goal is the qualitative classification of patterns, a
normalization procedure is used in order to reduce the in-
fluence of concentrations and non-linearities. Each input
pattern is divided by its Euclidean norm.

3.2. Classification without drift
Prior to applying the GMM classifier, a dimensionality re-
duction technique namely PCA was used in order to per-
form redundancy removing and feature reduction. Figure 4
presents the two-dimensional PCA scores for all the studied
gas sensors steady state voltage. We can note that the de-
cision boundaries are not well defined due to a strong over-
lapping.

In order to compare the performance of different classi-
fiers, a 10-fold cross validation approach was used allowing
to overcome the problem of the limited data set typically
available in gas sensors applications. It is well known that
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Fig. 4. PCA results for the microelectronic sensor array steady state
voltage. Measurement type,CO (circles), CH� (plus signs), mixture CO-
CH� (diamonds),H� (triangles) and mixture CO-H� (squares).

the performance of a given classifier depends on the number
of principal components. In order to obtain a more objec-
tive comparison, we reported in Figure 5, the classification
success of GMM, KNN and MLP as function of the number
of principal components. The best performance is achieved
using GMM with a success rate of ����� obtained for 5
principal components.
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Fig. 5. Accuracy as a function of the number of principal components.

3.3. Classification with drift
Among the most serious limitation of actual gas sensors is
the drift problem, which shows significant temporal varia-
tions of the sensor response when exposed to identical at-
mospheres. Drift problem can be explained as a random
temporal variation of the sensor response when exposed to
the same gases under identical conditions. It can affect both
the baseline (additive) and the sensitivity of the sensor (mul-
tiplicative). Figure 6 illustrates an example of an additive
drift problem in which we have reported the real response
of the sensor as function of the concentration of gases pe-
riodically injected into a gas chamber in which the sensors
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are being placed. We can note that the baseline response
of the sensor is shifted which complicates the classification
problem even further.
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Fig. 6. Additive drift affecting the sensor baseline.

The drift causes temporal variations of the pattern dis-
tribution in the feature space. This makes obsolete the de-
cision surface obtained during the training phase and hence
retraining the entire system is necessary.
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Fig. 7. Classification performance as function of drift (expressed in %)
before (dashed) and after (solid) retraining.

To compensate for the patterns dispersion movement,
we propose to extract robust features by generating simu-
lated drift. The efficiency of this procedure has been tested
against simulated linear drift. The drift has been modelled
as vd�t� � v����t�where v is the sensor output before the
drift experiment and �tmax was chosen randomly for each
sensor [6]. Drift varying between 0 and 30% has been artifi-
cially generated. The performance of the best classifier was
evaluated over the drifted measurements. Figure 7 shows
that drift affects the recognition ability of the GMM as the
classification success declines significantly (dashed line of
figure 7). The drift counteraction strategy is to retrain GMM
using drifted sensor responses (solid line of figure 7). The
performance of the retrained GMM was evaluated using the

10-fold cross validation method. It is shown that the coun-
teraction procedure improves the performance of GMM in
presence of ��� drift by a factor of over ���. The final
assessment of this procedure has to be achieved by testing it
over real sensor’s drift data.

4. CONCLUSION

In this paper we presented a gas identification approach based
on class-conditional density estimation using Gaussian mix-
ture models (GMM). The proposed classifier is shown to
outperform both KNN and MLP for gas sensors data set col-
lected from an integrated gas sensor array. It was however
found that the drift seriously degrades the classification per-
formance of GMM. A drift counteraction approach based
on extracting robust feature using a simulated drift was pro-
posed. The performance of the retrained GMM was evalu-
ated using a cross validation method which shows a gain of
over 35% obtained for up to 30% drift. The test of the pro-
posed approach for real drift values obtained for example
by varying the operating temperatures is underway.
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