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ABSTRACT

In this paper we introduce an efficient Hidden Markov
Model-based Voice Activity Detection (VAD) algorithm
with time-variant state transition probabilities in the
underlying Markov chain. The transition probabilities vary 
in an exponential charge/discharge scheme and are softly
merged with state conditional likelihood into a final VAD
decision. Working in the domain of ITU-T G.729
parameters with no additional cost for feature extraction,
the proposed algorithm significantly outperforms G.729
Annex B VAD while providing a balanced tradeoff
between clipping and false detection errors.  The
performance compares very favorably with Adaptive
MultiRate VAD, phase 2 (AMR2).

1. INTRODUCTION

Actual speech activities normally occupy 60% of the time
on a regular conversation in a telecommunication system
[1]. Voice Activity Detection (VAD) enables reallocating
system resources during the periods of speech absence. In
modern telecommunication systems, VAD, in conjunction
with Comfort Noise Generator (CNG) and Discontinuous
Transmission (DTX) modules, play an important role in
enhancing the utilization of system resources. 

VAD distinguishes between speech and non-speech
frames in the presence of background noise.  In general,
VAD errors can be categorized into two main types of
errors, notably clipping errors and false detection errors.
Clipping errors occur when a speech frame is misclassified
as a noise frame, which is intolerable in speech encoders
due to its effect on speech intelligibility. While false
detection errors are due to misclassifying a noise frame
into a speech frame. Echo cancellation systems are
normally sensitive to this type of errors because it results
in incorrect parameter adaptation. 

In this paper, we focus on voice activity detection of
one of the popular communications standards, namely
G.729. This voice coding standard was introduced by the

International Telecommunication Union (ITU) along with
a recommended VAD algorithm in G.729-Annex B [3]
and was tested by Rockwell International in [1]. G.729B
VAD is based on a simple piecewise linear decision
boundary between a set of differential parameters and their 
respective long-term values. The advantage of the G.729B 
VAD is that it works in the parameter domain of the
underlying coder with no extra load for feature extraction.
However, the performance of the G.729B VAD is lower
than many other VAD algorithms.  Fuzzy logic VADs
(FVAD) [3] have been recently introduced for the G.729
environment. FVAD provides 43% and 25% an
improvement on clipping and false detection errors,
respectively compared with G.729 VAD.

We continue in the same direction and introduce a
Hidden Markov Model (HMM)-based VAD algorithm that 
works in the domain of the G.729 parameters and provides 
a balanced improvement to the traditional G.729B VAD
with minimal additional complexity. We will compare the
performance of the proposed VAD with the performance
of the G.729B VAD. We will also compare its
performance with performance of the popular Adaptive
Multi Rate, option 2 (AMR2) VAD [6], although the latter 
works in the FFT domain which is different than the G.729 
feature domain. 

The proposed VAD softly merges the state
conditional likelihood of the frame parameters to be
speech/noise (irrespective of past frames) with a dynamic
behavioral model across consecutive frames. It requires no 
prior offline learning as opposed to FVAD.

The structure of the proposed VAD system is given in 
Section 2 while the proposed algorithm is described in
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Figure 1. Two-State Markov Chain.
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Section 3. The performance of the proposed VAD is
studied and compared with the G.729B VAD and with the 
Adaptive MultiRate VAD, phase 2 (AMR2) in Section 4
and a summary is given is Section 5.

2. THE STRUCTURE OF THE PROPOSED VAD

Modern VAD algorithms, in general, consist of two major 
parts. The main part produces a preliminary decision as for 
the current frame being a speech or a non-speech frame.
This preliminary decision depends on the difference
between the characteristics of speech and noise in a certain 
domain using a certain criterion of comparison. Due to
being far from ideal, the main part of the VAD does not
always provide the correct decision, e.g. clippings may
happen at areas of change from noise to speech and vise
versa. In order to compensate for this shortcoming, the
second part of VAD modifies the preliminary decision
based on the previous decision(s). For example, some
VAD algorithms use a discrete Markov chain while others
modify the current frame status into speech frame if the
preliminary decision of the previous frame is speech,
regardless of the current frame characteristics. This part of 
the VAD is often known as the hangover scheme.

Applying a hangover scheme reduces clipping error
rate at the expense of an increase in false detection error
rate. A hangover scheme is acceptable as long as the
overall performance is improved. 

In the proposed VAD we adopt a semi-continuous-
state-transition probability HMM-based algorithm. The
structure of the HMM provides an integrated probabilistic
framework where the main VAD stage and the hangover
stage are softly combined. One decision is produced (per
frame) based on the interaction between the two system
components, namely the hidden layer and the observation
layer.  As a rough analogy, the state transition layer serves 
as a dynamic hangover while the observation layer takes
care of the comparison of the frame features. 

2.1. The state transition layer (hidden layer)

The proposed model assumes two states, S1 and S2,
representing the noise and speech frames, respectively.
The probability of being in a certain state given the
immediate previous state is defined by a state transition
matrix A={aij}, where aij is the probability of a state
transition from state Si to state Sj, subject to the constraint: 
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To reflect the higher likelihood of remaining in the
same state, a00 and a11 are expected to be generally larger
than a01 and a10, respectively. The transition probability
from the speech state to the noise state, a10, is more
important for a communication system VAD than the
transition from the noise state to the speech state, a01.

Incorrect transition from the speech state to the noise state 
should be discouraged in order to avoid misclassifying
parts of speech, e.g. offset speech, as an outcome of the
noise state. We adopt a dynamic scheme in which the
probability of making such transition, a10, decreases
starting from the beginning of a phrase down to a limit
a10min. In other words, a10 is inversely proportional to the
time spent continuously in a speech state, given that the
conditional probability of the current frame xt to be
produced by state S1, b1(xt), is higher than the conditional
probability of the current frame xt to be produced by state
S0, b0(xt). Otherwise, a10, gradually returns to its idle value 
a10max. This form of continuous transition probability
HMM (CHMM) has a transition matrix that is given by:
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where ti is time index of the frame where the condition
bi(xt)>bj(xt) was first met in the most recent segment, ti’ is
time index of the frame where the condition bi(xt)<bj(xt)
was first met in the most recent segment, and bi(xt) is the
conditional probability of the tth frame whose parameter
set is x t to be generated by a state Si , i.e.: 

)|()( itti SPb xx =

For simplicity, τ0 is set to infinity while a01max, a10max

and τ1 are set to .1, reducing the number of free parameters 
in the system while maintaining emphasis on transitions
from the speech state. Thus, a10min becomes the system
parameter that controls the system bias for/against speech. 
A bias factor β is defined as β=-log(a10min), subject to the
constraint β>0. In our simulation, we set the bias factor β
to an arbitrary value of 10. It should be noted that, the
higher the bias factor β the more difficult to leave the
speech state, i.e. less clipping and more false speech
detection may result.

Setting τ0 to infinity results in a constant a00 and a01,
and matrix A becomes:
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The proposed model is thus a semi-continuous
transition probability HMM. This should not be confused
with the semi-continuous HMM, where the “semi-
continuous” term refers to the probability density function
of the HMM.

2.2. The observation layer

The observation layer is the part of the system that is
concerned with computing the likelihood of a frame being
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a speech or a noise frame given a certain state. This
conditional likelihood is estimated based on a distribution
associated with each state, which takes the form of a
Probability Density Function (PDF) for continuous-
probability HMMs.  A state PDF is normally
approximated by a weighted sum of a set of prototype
distributions. For simplicity, we approximate the state
PDFs in the proposed HMM by one p-dimensional
multivariate distribution per state PDF. We adopt a
generalized multivariate Gaussian distribution in [4] with
κ= 0.5 for Laplacian case:
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where Γ(.) is the Gamma function, p is the size of the
feature vector x, and Σ is a non-negative definite pxp
matrix that is given by:
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where cov(x) is the covariance matrix of x.
Choosing Laplacian distribution to represent the state

PDF is motivated by our statistical observations on a set of 
32000 frames from voice streams of two male and two
female speakers [5].

3. THE PROPOSED ALGORITHM

An initial estimate of noise state PDF is obtained from the 
first 16 frames. The initial parameters of the speech state
PDF are assumed to be the same except for the variance.
The initial variance of the speech state PDF is assumed 10 
times larger than that of the noise state PDF. This
assumption, which is important to compensate for the
absence of prior information about speech statistics, seems 
acceptable in a wide range of SNR (down to 0dB).
However, this assumption is expected to have a negative
impact on the system performance at extremely low SNR
levels (-5 dB and below) due to the fact that at such a low
SNR, the background noise variance becomes extremely
large invalidating the assumption of noise variance being
.1 of the speech variance. 

A VAD flag of a frame is set to 1 if the likelihood of
the speech state is larger than or equal to the likelihood of 
the noise state at any given frame, and is set to 0
otherwise. The likelihood of a state Sj to generate a frame
t, whose feature vector is xt, and the frame sequence up to 
the time t is given by:
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where ,2,1,,)()|( 1 =≡== − jitaSqSqP ijitjt

qt is the effective state at the tth frame, t0 is the number of
frames used to initialize the state PDFs and T is the total
number of frames in the stream.

In order to improve the estimation of the PDF
parameters and to compensate for the (presumably) slowly 
varying changes in the speech environment, we adopt an
adjustment scheme by which the parameters of state PDFs
are updated as follows: 
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and ρ=1/n(j), where n(j) is the number of past visits to a
state Sj.

Small values of ρ are better from stability point-of-
view but result in slower adjustment. We note that this
adjustment scheme may not be highly robust at large
values of ρ where error accumulation may result from
wrong decisions. This argument is particularly important
in low performance VAD conditions (e.g. very low SNR),
where the correct detection rate is lower than 50%. In
order to ensure the stability at the beginning of the call
where the number of visits to both states is small, we limit 
the adjustment factor ρ to .1%.
The complexity of the proposed algorithm is about three
folds of that of the G.729 VAD, which is very small
compared with the overall G.729 encoder complexity.

4. RESULTS AND DISCUSSION

The proposed VAD works on top of the G.729 encoder
and is applied to a set of 12 voice streams (about 96
seconds) from 4 different speakers; two males and two
females with 3 streams/speaker from [5].  The G.729
encoder runs on 100 frame/sec (80 samples/frame) and
provides the values of energy, low-band energy, zero
crossing rate, and ten Line Spectral Frequencies (LSFs)
for each frame. The voice streams are corrupted by three
different types of background noise; white noise, babble
noise and car noise at different average SNR levels
between 20 dB and 0 dB.  Table 1 shows a comparison
between the performance of the proposed HHM VAD and 
Adaptive MultiRate VAD, phase 2 (AMR2) [6] against the 
performance of ITU G.729 B VAD.
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Table 1. The performance of the proposed HMM VAD and AMR2 VAD against the performance of
G.729B VAD. The performance is evaluated in terms of: 
- the probability of clipping, Pc, 
- the probability of false detection, Pe, 
- the improvement in Pc, which is given by -(Pc|AMR2/HMM-Pc|G.729)x100/ Pc|G.729, and 
- the improvement in Pe, which is given by -(Pe|AMR2/HMM-Pe|G.729)x100/ Pe|G.729.

G729B AMR2 The proposed HMM-based VAD
Noise
Type

SNR
(dB) Pc(%) Pe(%) Pc(%) Pe(%)

Improve
ment in 
Pc(%)

Improve
ment in 
Pe(%)

Pc(%) Pe(%)
Improve
ment in 
Pc(%)

Improve
ment in 
Pe(%)

20 14.49 28.14 0.28 61.08 98.07 -117.06 1.02 6.91 92.96 75.44
10 25.92 27.21 0.08 66.60 99.69 -144.76 5.77 3.81 77.74 86.00Babble

0 42.12 27.51 0.08 65.12 99.81 -136.71 14.27 2.40 66.12 91.28

20 16.16 10.49 0.49 14.48 96.97 -38.04 0.38 9.54 97.65 9.06
10 27.62 10.42 0.91 12.40 96.71 -19.00 2.35 6.26 91.49 39.92Car

0 39.14 10.23 14.42 4.27 63.16 58.26 12.35 2.22 68.45 78.30

20 17.99 10.30 0.49 11.25 97.28 -9.22 6.85 2.01 61.92 80.49
10 30.35 10.42 1.08 11.00 96.44 -5.57 15.42 0.90 49.19 91.36White

0 48.30 10.51 5.27 7.28 89.09 30.73 26.88 0.05 44.35 99.52

Average improvement over G.729B 93.02 -42.37 72.21 72.37

 The performance is evaluated in terms of the
probability of clipping, Pc, and the probability of false
detection, Pe, where:

- Pe is the ratio of the number of noise frames that are 
mistakenly classified as speech to the total number of
noise frames.
- Pc is the ratio of the number of speech frames that
are mistakenly classified as noise to the total number
of speech frames.
In general, AMR2 VAD provides the lowest clipping

rate over G.729B VAD and the proposed HMM VAD
(with 93.02% improvement over G.729B VAD). This
happens at the cost of higher false detection rate (42.37%
average degradation), specially in the case of Babble
noise. On contrary, the proposed HMM VAD provides a
balanced, yet significant, improvement to G.729B for
clipping rate and false detection rate; 72.21 and 72.37%,
respectively.

We note that, the improvement of the proposed
system in the false detection rate is better than the
improvement of the clipping rate in the case of white
noise. This is because the noise is more stationary and thus 
easier to track. On the other hand, in the case of car noise
the improvement in the clipping rate of the proposed
system is better compared to the improvement of the false
detection rate because the noise is less stationary.

5. SUMMARY 

In this paper, we propose an efficient VAD algorithm to
work with G.729 compliant encoders in their parameter
domain with minimal additional computational load for

feature extraction. The proposed VAD is a semi-
continuous state transition probabilities HMM-based with
a Laplacian observation layer, with no need for offline
learning. The proposed VAD provides a significant
improvement to G.729B with a good balance between the
drop in clipping rate and in the false detection rate
compared with that of the G.729 B VAD.
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