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ABSTRACT

High signal to noise separation has been a long standing 

goal in the signal detection community. High in the sense 

of being able to separate orders of magnitude a signal(s) 

of interest from its surrounding noise, in order to yield a 

high signal detection probability at a near zero false-alarm 

rate. In this paper, I propose to use some of the advances 

made on the theory of logistic regression models to 

achieve just that. I discuss a logistic regression model—

relatively unknown in our community—based on case-

control data, also its maximum likelihood method and 

asymptotic behavior. An anomaly detector is designed 

based on the model’s asymptotic behavior and its 

performance is compared to performances of alternative 

anomaly detectors commonly used with hyperspectral 

data. The comparison clearly shows the proposed 

detector’s superiority over the others. The overall 

approach should be of interest to the entire signal 

processing community. 

1. INTRODUCTION 

Logistic regression models are commonly used in 

analyzing binary data which arise in studying 

relationships between disease and environment of genetic 

characteristics. After re-parameterization, logistic 

regression models can be expressed as a two-sample 

semiparametric model in which the log ratio of two 

density functions is linear in data, or in feature space. 

Advances in this area produced adequacy examination 

of the hypothesized link for a given prospective sampling 

dataset [1], also a nonparametric regression method to test 

the validity of the logistic regression assumption [2], and 

some graphical methods for assessing logistic regression 

models [3]. More recently, the logistic regression 

assumption under a case-control sampling plan was tested 

[4] and its theory further formulated as an alternative 

approach to the one-way layout ANOVA (analysis of 

variance) that relaxes the normal assumption [5].  

The focus in this paper is on using hyperspectral 

sensor imagery (HSI) with the mathematical statistic 

advances mentioned above to effectively achieve the 

automatic detection of certain types of signals (e.g., 

stationary ground vehicles) in natural clutter backgrounds 

(e.g., roads, grasses, trees).

Such an endeavor would benefit a military soldier, for 

instance, facing multiple tasks inside a remote ground 

control station by freeing this soldier from staring most of 

the time to a surveillance monitor. (Researchers at the 

Army Research Lab have extensive experience addressing 

these types of issues [6-8].)

The proposed approach has three fundamental parts: 

(1) introduction of a new method to obtain local sample 

variability from HIS; (2) transformation of samples into 

the discriminant metric SAM (spectral angle mapper) 

space, using the method in (1); and (3) introduction of a 

new data/feature model, relatively unknown in the signal 

processing community. 

In this model, the probability distribution function 

(pdf) of transformed test samples is represented as a 

distortion of a reference pdf, which is also estimated from 

the incoming data. A new anomaly detector will be 

designed based on the model’s asymptotic behavior and, 

for convenience, it shall be named SemiP detector.  

The SemiP detector will assume no prior knowledge 

about the target and clutter statistic and no supervised 

training will be required. Its performance will be 

compared to performances of alternative anomaly 

detectors commonly used with hyperspectral data. The 

overall approach should be of interest to the entire signal 

processing community. 

The paper is organized as follows: In Section 2, I 

describe a logistic regression model based on case-control 

data and its profiling maximum likelihood method. 

Section 3 describes an innovative method to obtain 

sample variability from the data and adaptation of theory 

to design the SemiP detector. Section 4 describes the 

hyperspectral dataset, other anomaly detectors, and 

comparison results. Section 5 summarizes the paper. 
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2. LOGISTIC REGRESSION MODEL 

Let two vectors Xk have their components iid

(independently, identically distributed) and let Xk be 

independent of Xj . Now, consider the model shown 

below, with [.]t denoting a transposed vector:
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Regarding g1(x) as an exponential distortion of a

reference g0(x), one can express
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where h(x) is an arbitrary but known function of x. (In this

paper h(x) = x.) Letting a new vector t be constructed as 
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and using (1), the MLE (maximum likelihood estimate) of 

 and  can be derived via the likelihood function
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Since g0 is unknown, deriving MLE of  and  via

standard procedures can not be achieved; however, a

simple profiling method can be applied here to express g0

in terms of  and using the following facts: (i) fixing

and , implies that maximizing  is equivalent to

maximizing ; (ii) g0 has the properties of a pdf; and 

(iii) motivated by (1), an exponentially distorted g0 is also

a pdf. Using those facts, one can use any optimization

method to maximize (given a set of conditions from

the three facts above), express g0 in terms of  and , and

finally find the MLE via a set of score equations. A 

solution set should match the following one for =n1/n0

[4]:
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3. DESIGNING THE SEMIP DETECTOR

To adapt the theory in Section 2 to the detection

framework in context, a method to compare local

information must be devised and the asymptotic behavior

of the estimated parameters must be understood.

3.1. Obtaining Sample Variability

The most common method to compare local information

in imagery is to use the traditional inside/outside window

implementation. The inside window represents the test

cell and the outside window the reference cell. The notion

is to check the likelihood of observed objects in the test

cell of belonging to the class of observed surrounding

background clutter in the reference cell. This approach, 

although very common, causes an unacceptably high 

number of false alarms on areas where nonhomogeneous

clutter are observed in the reference cell. The problem

occurs when samples from the reference cell are reduced

to a set of statistics, hence, misrepresenting local regions

consisting of mixed background clutter.

In this paper, I propose a more robust method to

obtain local sample variability, which complements the

strengths of the SemiP detector to suppress clutter that are 

highly nonhomogeneous. I define a third window

(variability cell) and compute two sets of local features

using this outer window: (1) discriminant metric between

each sample from the variability cell and an average 

sample from the reference cell and (2) discriminant metric

between these same variability-cell samples and the other

average sample from the test cell. Feature set 1 will form

the input reference to the new detector and feature set 2

will form the input test.

3.2. Theory Adapted for Detection 

In reference to the theory in Section 2, since g0 is a 

density,  = 0 implies  = 0, and the hypothesis H0:  = 0

infers that the populations of the two feature sets

described in Section 3.1 are equally distributed, namely,

g1 = g0. A realizable detector can now be designed from

the following composite hypothesis test:
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Local regions in the entire imagery will be individually

tested yielding a binary surface that depicts hypothesis H1

as “1” and H0 as “0.” An isolated object is expected to 

produce a cluster of  “1” values (anomalies) in this

surface.

The last two peaces to complete the SemiP detector is

to find the pdf of  (MLE of ) and to select a 

discriminant metric (feature) for the hypothesis test. After

consideration of many candidates, I settled for the metric

SAM (spectral angle mapping) [9], which essentially

computes the angle between two vectors. SAM is a

popular metric in the hyperspectral community. In

reference to the asymptotic behavior of , it can be

shown [5] that
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Using the above asymptotic behavior and the null

hypothesis with o = 0 as the true value of , one can 
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construct a hypothesis test based on the chi-squared

distribution with one degree of freedom ( ), or:2
1

2
1

22 )(ˆˆ)1( tVn

where the estimate of the test-statistic variance (V ) is 

poorly approximated by the standard sample variance

using the constructed vector t. A significant better

approximation is to use the actual definition of variance

(i.e., E[(x- )2]) and the resulting biased estimate of g0

from the theory described in Section 2. With those

comments, the SemiP detector is complete. High values of 

 reject hypothesis Ho, detecting anomalies.

)(ˆ t

4. EXPERIMENT RESULTS 

4.1. Data

Experiment was carried out on data set from the

hyperspectral digital imagery collection experiment

(HYDICE) sensor. The data have a spatial resolution of 

approximately one meter. The HYDICE sensor records

210 spectral bands in the visible-to-near infrared (VNIR)

and short-wave infrared (SWIR). The results shown in

this section for one data cube are representative for the

data set. An illustrative data cube is shown in Fig 1. The

scene consists of six stationary motor vehicles (targets) in

the presence of natural background clutter (e.g., trees, dirt

road, grass). Due to window cell sizes, Fig 1 also shows 

the region in the scene tested for anomalies, which is

depicted as a large rectangle, excluding one of the targets.

4.2. Other Detection Techniques

The SemiP detector will be compared to four other

techniques: RX (reed-xiaoli), PCA (principle component

analysis), EST (eigen separation transform), and FLD

(fisher’s linear discriminant). These techniques—or

variations of them—are commonly used in the

hyperspectral community. They are represented by the 

following equations [6]:
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where
inx is a sample mean vector from a set of inside-

window vectors;
outx is similar but sampled from the

outside window; C is the inverse sample covariance1
out

Figure 1 Nonhomogeneous, multicomponent scene

from the HYDICE data collection. Typical anomaly

detectors produce an unacceptable high number of

false alarms (non-anomalies) in such a scene; local 

discontinuities degrade performance.

using all vectors sampled from the outside window;
E

is

the highest energy eigenvector of the eigenvector

decomposition of the inside-window covariance;

t
in

t
CE is

the highest positive energy eigenvector of the eigenvector

decomposition of the covariance difference (inside-widow

minus outside-widow); and 
E

is the eigenvector 

decomposition of the scatter matrices ratio 1

t
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and
totalX

is the sample average using samples from the 

inside and outside windows.

4.3. Results

ROC (receiver’s operating characteristics) curves are used

in this paper to quantify the differences in performance

among the five techniques. The vertical axis of the ROC

curves shown in Fig. 2 is the PD (probability of detection)

domain and its horizontal axis is the FAR (false alarm

ratio) domain in terms of the number of false alarms per a 

squared kilometer (km2) area.

The quality of a detector can be readily assessed by

noticing a key feature in the shape of its ROC curve. The 

closer the knee of a ROC curve is to the PD axis, the less

sensitive the approach is to different decision thresholds,

i.e., FAR does not change significantly as PD increases.

As one can assess from Fig 2, the SemiP detector

performs dramatically superior to the others.

This dramatic performance can be better appreciated

by observing the decision surface (chi-squared values per 

location) in Fig 3. The surface was clipped at the value of 

300, but it does continue to three orders of magnitude

above this value. The five dominant peaks in that surface

are the results produced by the five targets in the tested

scene. Areas containing the presence of clutter mixtures
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Figure 2 ROC curves of five anomaly detectors on 

scene depicted in fig. 1: SemiP (top), EST (2nd from 

top), RX (3rd from top), FLD (4th from top), and

PCA (5th from top). The SemiP detector is

significantly less sensitive to different decision

thresholds.

(e.g., edge of terrain, edge of tree clusters), where other

methods usually find a high number of false alarms (false

anomalies) are significantly suppressed by the new 

approach. (Why?)  Because, as part of the theory, features

from different cells are not compared as two individual

cells, they are combined and then compared to the test

cell. This property in our hypothesis test produces more

evidence that a subset of a clutter mixture (e.g., shadow)

observed in the test cell might belong to the same

distribution of the clutter mixture itself (e.g., trees and 

shadows), when observed in the reference cell.

Performances of such cases are shown in Fig. 3 in the 

form of less-dominant peaks.

The set of combined feature samples is a spontaneous

consequence of the mathematics as  the logistic regression

model is applied to our problem. Recall that in the model,

the distribution functions of features in the SAM space are

related by an exponential distortion.

5. FINAL REMARKS 

A fully unsupervised anomaly detector (SemiP) has been 

presented for hyperspectral imagery. The approach has an 

adapted logistic regression model and a solution for its

hypothesis test exploits recent advances in semiparametric

theory. Performance of the SemiP detector in the visible to

short-wave infrared region of the spectrum was compared

to performances of four other techniques. The comparison

clearly showed SemiP detector’s superiority over the

others. The asymptotic distribution of the test statistic

under Ho is independent of the unknown parameters,

which implies that SemiP has the constant probability-of-

error property. Having so, one can—in theory—select a 

decision threshold that yields a virtual zero probability of

error. Error in this context means detection of non-

anomalies, which is purely based on similarities between

test samples and their immediate surroundings, not

necessarily non-targets. This distinction should be noted.

Figure 3 Decision surface produced by the 

SemiP detector for scene in fig. 1. The five

dominant peaks represent undisputed 

anomalies in the tested scene. Notice other 

less-dominant peaks in the surface due to

local discontinuities observed in fig. 1.
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