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ABSTRACT 

The generalized Lloyd algorithm is one of popular 

partition-based algorithms to construct the codebook in 

vector quantization. We propose the Delta-MSE 

dissimilarity measurement between training vectors and 

code vectors based on the MSE distortion function. The 

Delta-MSE function is heuristically derived by calculating 

the difference of MSE distortion before and after moving a 

training vector from one cluster to another. We show that 

the Delta-MSE dissimilarity applies also to minimizing the 

F-ratio validity index of the vector quantizer. We 

incorporate the underlying dissimilarity into the 

generalized Lloyd algorithm in vector quantization with 

the initial codebook derived from the PCA-based k-d tree 

algorithm. Experimental results show that the proposed 

dissimilarity generally achieves better performance than 

the L2 distance in constructing the codebook of vector 

quantization. 

1. INTRODUCTION 

Vector quantization (VQ) s a method for data reduction 

that is widely used in low bit rate compression of image 

and audio data source [1, 2]. The objective of vector 

quantization is to search a M set of code vectors 

(codebook) with the minimum distortion between training 

vectors and their representative code vectors.  One of most 

cited partition-based algorithms is the generalized Lloyd 

algorithm (GLA). It basically consists of two steps: the 

assignment of each training vector with a class label by 

finding its closest code vector and the computation of code 

vectors. There are many improved versions of the GLA 

algorithm such as the genetic GLA algorithms [3], the 

randomized local search algorithms [4, 5] and the fast 

implementations of GLA [6-7]. The standard GLA is 

applied as an integral part of the vector quantization 

algorithms above. Either the genetic algorithms or the 

randomized algorithms run the GLA algorithm many times 

during one run of the algorithms. The computation in the 

GLA mainly relies on the distance calculations between 

the training vectors and the code vectors. The fast 

implementations of GLA such as PDS [8] and MPS [9] 

reduce a number of distance calculations after several runs 

of partition in GLA. The GLA vector quantization 

algorithm can be also considered as a clustering algorithm 

on training sets. Hence its dissimilarity function or 

distance function can be reformulated to improve vector 

quantization performance. 

The distortion function of VQ is always defined by the 

total dissimilarities between all training vectors and their 

code vectors. The definition of a new dissimilarity 

function often leads to the re-formalization of the 

distortion function, which also requires that the code 

vectors are re-computed consistently to minimize the 

distortion function. However, in this work, a heuristic and 

non-symmetric dissimilarity function is analytically 

induced from the predefined distortion function. The 

considered approach takes account into the dynamic nature 

of the GLA partition process, in which the cluster 

parameters (the cluster sizes) are subject to change all the 

time during the run of the algorithm. The above design 

paradigm can be applied to the MSE distortion function to 

derive a dissimilarity function between training vectors 

and code vectors. 

The structure of this paper is organized as follows: We 

first describe the design paradigm of the Delta-MSE 

dissimilarity based on one partition of training vectors. In 

the following section, we show that the Delta-MSE 

dissimilarity is applicable also to the F-ratio clustering 

validity index. Then the algorithm is Delta-MSE 

dissimilarity incorporated into the GLA algorithm in next 

section. In experimental section, performance comparisons 

are reviewed between the Delta-MSE dissimilarity and the 

L2 distance. Finally, the conclusions are drawn. 

2. DELTA-MSE DISSIMILARITY 

The aim of vector quantization is find the partition of the 

training set with the minimum distortion between all 

training vectors and their code vectors. The standard GLA 

vector quantization is an optimization problem specified 

by the minimization of the MSE function: 
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where 

N  is the number of data vectors; 

k  is the number of clusters (NOC);

X = { x1, x2,……xN } is  a set of N training vectors;   

P = { pi | i = 1,……N } is the set of class labels;  

C = { cj |  j = 1,…k } is the set of code vectors. 

Assuming that a training vector x is moved from cluster 

i to cluster j, the change of the MSE function [10] caused 

by this move is: 
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where ni and nj are two cluster sizes respectively. The first 

part in the right hand side of equation (2), representing the 

increased value of the total variance of cluster j caused by 

this move, is denoted the addition cost. The second part, 

representing the decreased value of total variance of 

cluster i, is denoted the removal cost. The addition cost

can be interpreted as the dissimilarity between training 

vector x and code vector cj (x is outside cluster j). A 

smaller cluster size nj obviously makes the addition cost

more different from the L2 square distance. 

It should be noted that the change of variance by 

adding a training vector into one cluster is equivalent to 

the change of variance by removing the training vector 

from the new cluster. Hence the second part can be 

interpreted as the dissimilarity between training vector x

and its former code vector ci. Obviously, the training 

vectors in sparse clusters are moved frequently by the 

dissimilarity than those in dense clusters. The Delta-MSE 

dissimilarity between training vector xi and code vector cj

is defined as: 
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where wij is defined as: 
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The square L2 distance in equation (3) can be replaced 

with the standardized L2 distance as: 
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where D is the diagonal matrix with diagonal elements 

given by vj, which denotes the variance of the variable xj

over the N training vectors. The distribution of cluster 

sizes determines the clustering performance of the Delta-

MSE dissimilarity. The sparser one cluster is, the more 

different the Delta-MSE dissimilarity can be in 

comparison to the L2 norm. When the codebook szie is 

increased, most of clusters become sparser. In this case, 

the proposed dissimilarity enables more reassignments of 

the training vectors in sparse clusters, consequently 

increasing the number of vector reassignments. The Delta-

MSE dissimilarity therefore yields the better VQ distortion 

than the L2 distance. 

3. F-RATIO VALIDITY INDEX 

Many iterative clustering algorithms rely on F-ratio 

validity index in estimation of the codebook size. The F-

ratio in is defined as the ratio of within-groups variance to 

between-groups variance. The total variance of the 

training set can be decomposed into the sum of within-

groups variance and between-groups variance as: 
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where x is the mean vector of training set. The F-ratio is 

an extension of Fisher’s discriminant to measure the 

separability between clusters. The F-ratio clustering 

validity is calculated as the ratio of the total within-groups 

variance against the total between-groups variance as: 
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The smaller the F-ratio is, the more separated the clusters 

are. The F-ratio validity index is useful in the estimation of 

codebook size, which also relies on the geometrical 

structure of training source. 

Since the Delta-MSE dissimilarity is analytically 

derived from the MSE distortion, if the removal cost DMSE

(x, ci) is greater than the addition cost DMSE (x, cj), the 

MSE distortion will decrease after this movement. In the 

partition phase, the training vector x is inclined to move 

into the cluster with the minimum addition cost, which 

brings the greatest decrease of MSE value. In the 

following, we will show that the property holds on to the 

F-ratio validity index as well. 

Lemma: Given the partition of the training set that 

assigns training vector x into cluster i, if the addition cost

DMSE(x, cj) is greater than the addition cost DMSE(x, cl), the 

F-ratio F(x, cj) after moving x to cluster j is greater than 

the F-ratio value F(x, cl) after moving x to cluster l.

Proof of Lemma: Suppose that training vector x is 

moved from cluster i to cluster j and cluster l respectively.  

From equation (3) and (7), the difference of F(x, cj) and 

F(x, cl) is calculated as: 
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The total variance σ(X) is a positive constant; σ(X)-MSE(x,

j) and σ(X)-MSE(x, l), representing the between-group 

variances after the two movements respectively, are also 

positive. Thus, the value of equation (10) is positive if and 

only if DMSE(x, cj) is greater than DMSE(x, cl), which proves 

the lemma. 

4. IMPLEMENTATION OF GLA ALGORITHM 

The Delta-MSE dissimilarity is incorporated into the 

generalized Lloyd algorithm in this work. The 

incorporated GLA algorithm can also be accelerated by 

the triangular inequality elimination technique (TIE) by 

Chen and Hsieh [11]. The values of all weight numbers 

{wij | i = 1, … N, j = 1, … k} are reserved in two k-

dimensional arrays in each partition phase. The partition 

of training vectors by the Delta-MSE dissimilarity can also 

be exactly accelerated by application of two triangular 

inequalities. The number of Delta-MSE calculations can 

be reduced by the following two inequalities: 
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where x is training vector, ca and cb are its nearest code 

vector and farthermost code vector found so far; cj is the 

code vector to be detected. If one of the above equations 

holds, the calculation of DMSE(x, cj) can be avoided. A 

practical implementation of the acceleration utilizes the 

k×k matrix of the L2 distances between code vectors. The 

calculation of the matrix usually takes O(k2d) time. 

Assuming that k << N, the accelerated partition with the 

Delta-MSE dissimilarity takes O(d(k-s)N) time where s is 

the average number of avoided Delta-MSE calculations in 

reassignments of all training vectors.  

The initial code vectors here are chosen by a k-d tree

algorithm based on the nested principal component 

analysis, which is proposed in [12-13]. The code vectors 

are selected as k number of k-d tree bucket centers. The k-

d tree algorithm ensures that its bucket centers can be as 

appropriate candidate code vectors as training vectors. The 

time complexity of selecting the initial code vectors from 

k-d tree buckets is O(dkN).

Table 1: Comparison between the L2 distance and the 

Delta-MSE dissimilarity 

Dataset MSE F-ratio 

L2 8.381 1.908 
Air5 

Delta-MSE 8.298 1.888 

L2 269.2 6.240 
Bridge 

Delta-MSE 267.0 6.185 

L2 5744 57.72 
Bridge2 

Delta-MSE 5654 55.88 

L2 202.4 3.177 
Camera 

Delta-MSE 190.5 2.974 

L2 5.202 1.683 
Housec5 

Delta-MSE 5.119 1.656 

1.79

1.82

1.85

1.88

1.91

1.94

1.97

48 52 55 63 67

Number of clusters

F-ratio

L2
Delta-MSE

Fig. 1: F-ratios of the vector quantizers for Air5

5. EXPERIMENTAL RESULTS 

We first study the training sets generated from four 

standard images: Air5 and Housec5 are the training sets 

with the RGB-values from image Airplane and House - 

quantized to 5 bits per color; Bridge and Camera are the 

training sets with 4×4-blocks from image Bridge and 

Cameraman; Bridge2 is the training set with 4×4 binarized 

blocks from image Bridge. Both L2 norm and Delta-MSE 

dissimilarity are tested in the standard GLA algorithm. 

The initial code vectors are selected from the PCA-based 

k-d tree bucket centers. The average MSE and F-ratio 

values over the codebook size from 48 to 70 are displayed 

in table 1. The F-ratios of Air5 are plotted against the 

number of clusters (codebook size) in figure 1.

It turns out in figure 1 that the Delta-MSE dissimilarity 

achieves significantly smaller F-ratio distortions than the 

L2 distance with the increase of codebook size. The 

clusters become sparser with the increased codebook size, 

which makes the Delta-MSE dissimilarity more different 

from the L2 square distance and consequently enables 

more heuristicity for minimizing the distortions. Table 1 

shows the proposed dissimilarity generally performs better 

than the L2 norm in the GLA based vector quantization. 
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Table 2: Comparison between the standardized L2 

distance and its corresponding Delta-MSE dissimilarity. 

Dataset MSE F-ratio Test Error 

L2 6712 22.57 5.888 
Speaker1 

Delta-MSE 4850 21.83 5.851 

L2 6379 22.82 5.535 
Speaker2 

Delta-MSE 6289 22.31 5.529 

L2 4596 22.89 5.118 
Speaker3 

Delta-MSE 4474 21.95 5.102 

L2 4614 21.84 5.546 
Speaker4 

Delta-MSE 4534 21.11 5.552 

L2 3208 19.82 4.941 
Speaker5 

Delta-MSE 3158 19.34 4.904 

5.55

5.65

5.75

5.85

5.95

6.05

6.15

30 36 39 44 51

Number of clusters

Test

Errror

L2
Delta-MSE

Fig. 2: Test errors of the vector quantizers for Speaker1.

We secondly study the five real speaker datasets from 

TIMIT speech corpus by using the stepwise GLA 

algorithm. The Delta-MSE dissimilarity in equation (5) 

and the standardized L2 distance are investigated in the 

GLA algorithm. Each dataset is separated into a training 

set and a test set (about 25%: 75%). The two 

dissimilarities are incorporated into the stepwise GLA 

algorithm. Then the vector quatnizers are tested by their 

test sets. The average test errors are shown in table 2. The 

average MSE and F-ratio values displayed in the table are 

calculated over the codebook size from 30 to 55. Figure 2 

plots the test error of the vector quantizers for Speaker1

against their codebook size. It turns out that the proposed 

dissimilarity generally has better performance than the 

standardized L2 distance in the GLA based vector 

quantization. With the increase of the codebook size, the 

performance gains of the proposed dissimilarity are 

increased. 

6. CONCLUSIONS

We have proposed Delta-MSE dissimilarity function 

between training vectors and code vectors. The 

dissimilarity function is calculated as the change of within-

group variance before and after moving a given training 

vector from one class to another. The dissimilarity 

function provides the heuristic direction of training vector 

movements, in which the VQ distortion function will 

possibly decrease most. Although derived from the MSE 

distortion, the dissimilarity function applies also to the 

minimization of the F-ratio validity index. 

The experimental results show that the proposed 

dissimilarity undermines more reassignments of training 

vectors than the L2 norm. With the increase of codebook 

size, the performance gains of the GLA algorithm is 

increased as well. 

The weakness of the Delta-MSE dissimilarity function 

lies in its non-symmetric formalization. The cluster size 

can be one of the dominant factors only if the cluster is 

sparse enough.  
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