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Abstract

A blind source separation problem for short burst systems
is addressed by means of a constant modulus technique un-
der orthogonal constraints. It is shown that a conventional
Gram-Schmidt orthogonalization procedure normally
exploited in similar applications may cause a non-uniform
misadjustment distribution among the receiver outputs lead-
ing to an overall performance degradation. We propose a
modified algorithm based on random reordering of the
weight vectors before the orthogonalization stage and demon-
strate its efficiency by means of simulations in a short burst
MIMO environment.

1. INTRODUCTION

Blind source separation (BSS) of instantaneous and convo-
lutive mixtures is a technique of interest in wireless com-
munications and other applications. Some techniques based
on higher order statistics [1-4 and others] have been pro-
posed for BSS, including constant modulus (CM) and kur-
tosis based BSS approaches [3,4]. Short burst versions of
some of these techniques based on iterations over the same
block of data received in quasistationary conditions
are addressed in [5-7 and others].

To prevent the same source signal from being extracted
at different outputs it has been proposed to control crosscor-
relation properties of the extracted signals by means of pe-
nalization of the conventional CM criterion [8,9] or formu-
lation of the constrained CM or kurtosis-based criteria [3,4].
The last group of algorithms requires prewhitening of the
received signal and includes a criterion optimization proce-
dure under orthogonal constraints. A gradient search and
Gram-Schmidt orthogonalization procedure are employed
in [3,4] for the CM and kurtosis based versions of the tech-
nique. The asymptotic properties of this group of algorithms
have been studied in [3] and their global convergence has
been established.

In this paper we address a short burst application of
the BSS algorithm under orthogonalization constraints. We

show that a conventional application of the Gram-Schmidt
orthogonalization procedure in the constrained optimization
algorithm has some undesirable features under non-ideal
conditions, e.g. non-ideal prewhitening stage. Particularly,
we demonstrate that fixing the order of the weight vectors
at the orthogonalization stage leads to different misadjust-
ments at the different outputs causing overall performance
degradation. Taking into account that any signal may be
extracted at any output for a BSS technique, we accept the
recovering accuracy at the output with the highest misad-
justment as the performance metric.

We propose a randomized order selection of the weight
vectors at the orthogonalization stage, which allows us to
obtain a uniform distribution of the misadjustment error
among all the extracted signals leading the overall perfor-
mance improvementwithout any additional complexity. Sim-
ulation results for a short burst MIMO TDMA system demon-
strate advantages of the randomized algorithm for variable
receiving conditions.

The randomization effect can be demonstrated for dif-
ferent techniques based on iterative optimization of a blind
criterion with orthogonal constraints. In this paper we con-
centrate on the CM based constrained optimization to illus-
trate the main idea.

The paper is organized as follows. A data model is
presented in Section 2. The basic algorithm, the effect of
weight vector order to the Gram-Schmidt orthogonalization
stage at the CM based constrained optimization procedure
and the randomized modification of the basic algorithm are
given in Section 3. Some simulation results are shown in
Section 4 and our conclusions are presented in Section 5.

2. DATA MODEL

We assume that � i.i.d. mutually independent zero-mean
discrete-time sequences �����, � � � � � �� drawn from
the same constellation with the CM property �������� � �,
are transmitted through a��� MIMO linear memoryless
channel that introduces inter-user interference. The model
of the received signal slot of� samples takes the following
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form
���� � ����� � ����� � � � � � ��� (1)

where ���� is the � � � vector of received signal samples,
���� � ������ � � � �� ����T is the � �� vector of transmit-
ted (source) signals,� is the � �� channel matrix, ����
is the � � � vector of additive noise samples and ���T de-
notes a transpose operation. The channel matrix� consists
of i.i.d., complex, zero-mean, unit-variance entries indepen-
dent for different data slots.

The received signal ���� is subsequently filtered by a
� � � “matrix equalizer” ���� � ������ � � ��� ����
that produces the � � � vector of output signals ���� �

������ � � � �� ����T. The receiver output can be represented
as

���� ��T������� ��T������� � ������ (2)

where ���� � �T���� is the � �� overall response
matrix and ����� � �T������� is the spatially colored
noise at the receiver output. The problem is to find the
weight matrix���� that matches the receiver outputs �����,
� � � � � �� with all the transmitted signals �����, � �
� � � �� up to some rotation and permutation factors.

3. MULTIUSER CONSTRAINED CM ALGORITHM

3.1. Basic algorithm

Similarly to [3,4] the multi-user CM criterion can be formu-
lated for sub-Gaussian signals as

��	
�

��

���

	����T
������

� � ���� (3)

subject to: ��� � �� � (4)

where �� is the � � � identity matrix and ���� denotes
complex conjugate transpose operation and 	��� is a math-
ematical expectation operator. If the channel matrix is uni-
tary, i.e. ��� � �� , the constraint (4) can be reduced to
��� � �� .

Then, the basic algorithm can be formulated as follows:

Step 1. Prewhitening:


���� � �	����� � � � � � �� (5)

Step 2: Initialization

������� ��� (6)

Step 3: Calculate for 
 � � � � � �
Step 4: Calculate for � � � � � ��
Step 5: Calculate for � � � � � ��


���� ��� �� � ����
� � ����� ���
����C� (7)

���� ��� �
�
���
� ���

��
���
� ���� � �

� ����� ��� � ����T
� ���
���� (8)

Step 6: end of step 5
Step 7: Orthogonalization

������� �� � GS�������� ��� (9)

Step 8: end of step 4
Step 9: ��������� ��������
Step 10: end of step 3.

The following notations are used: 
���� is the � �

� input vector after prewhitening, �	 is the � � � pre-
witening matrix (will be specified in Section 4),������� �

��
���
� ��� � � ��

���
� ���� and ������� � �


���
� ��� � � �


���
� ����

are the � �� weight matrices at the 
-th burst iteration,
� is the number of burst iterations, � is the adaptation co-
efficient in the gradient search procedure, GS��� denotes

a Gram-Schmidt orthogonalization operation and ���C de-
notes a complex conjugate operation.

A conventional implementation of the Gram-Schmidt
procedure, e.g. the one exploited in [3,4] in the similar en-
vironment, can be expressed as

�� � 
����
���� (10)

�� �

� �

����
��� ���

� 
����

��
� �
����

��� ���

� 
������
� � � � � � ��� (11)

where the indexes 
 and �� � are omitted for simplicity.

3.2. Misadjustment effect

Let us assume that some misadjustment exists at the �����-
th adaptation step in (7):


���� �� � 
�� � Æ
���� ��� � � � � � ��� (12)

where 
�� is the ideal weight vector for the �-th output
and Æ
������ is the overall error (misadjustment) vector.
Some possible sources of misadjustment after convergence
are non-ideal prewhitening, noise and non-zero adaptation
coefficient.

Substituting equation (12) into equations (10) and (11)
we obtain the following expression for the weight vectors
after the orthogonalization step:

����� �� � ���Æ
���� ��� � � � � Æ
���� ���� (13)

for � � � � � �� , where �� some function.
An important observation can be made from equation

(13): the vector order at the orthogonalization step makes
a difference in terms of misadjustment effects. Indeed, the
first weight vector depends only on its own misadjustment,
i.e. ���� � �� � ���Æ
��� � ���, the second vector de-
pends on its own error as well as on the first’s vector error,
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i.e. ���� � �� � ���Æ���� � ��� Æ����� ��� and the last
vector depends on all the misadjustments, i.e. �� ����� �
�� �Æ�������� � � � � Æ�� ������, reflecting the algorithm’s
“deflation” nature.

An immediate consequence of this observation is that
the signal extraction accuracy depends on the weight vector
order at the orthogonalization step. A signal extracted at
the first output is expected to have the lowest error level
while the signal recovered with the last weight vector may
have the highest error level. Taking into account that a blind
approach does not allow us to control the signal extraction
order, i.e. any signal may be extracted at any output up
to some error and phase rotation, this effect may cause an
overall performance degradation.

3.3. Modified algorithm

To make the misadjustment error uniformly distributed (on
average) over all the extracted signals we propose random
selection of the vectors order at the orthogonalization step
independently for the consecutive iterations. In this case,
step 7 at the basic algorithm in Section 3.1 can be modified
as follows:

Step 7a: Random order selection

�������� �� � ORDER�������� ��� (14)

Step 7b: Orthogonalization

�������� �� � GS� �������� ��� (15)

Step 7c: Order recovery

�
������ �� � IORDER� �������� ���� (16)

where ORDER��� is the operator, which randomly reorders
the columns of matrix� and IORDER is the inverse opera-
tor, i.e. � � IORDER�ORDER����.

We refer to the basic algorithm in Section 3.1 as the mul-
tiuser CM algorithm (MUC) and the modified algorithm as
randomized MUC (RMUC). It is worth emphasising that
there is almost no additional computational complexity in-
volved in RMUC compared to MUC.

4. SIMULATION RESULTS

We simulate a � � � MIMO system (� � �, � � �).
The channel matrix � is chosen from a complex Gaussian
distribution of zero mean and unit variance ��� � � ��� ��.
Each user input is a QPSK signal. On the receiver side ad-
ditive white Gaussian noise of SNR=20 dB is added to each
of six received signals. A Schur algorithm is applied to es-
timate the prewhitening matrix 	� similarly to [3]. The esti-
mation is performed over the whole data slot of � samples.

The fixed adaptation coefficient � � ���
 and initialization
�� � �� are applied at all simulations. Variable slot size
is considered � � ���� ���� ��� ���� leading to different
prewhitening errors. The total number of iterations is 4000
for all simulations, i.e. 	 � ����
� .

Figure 1 quantitatively illustrates non-uniform misad-
justment distribution for MUC and the randomization effect
for RMUC. The first row of the constellation pictures shows
typical outputs of MUC for � � ���. The second row of
pictures presents the output signals of RMUC for the same
data slot. One can see the expected non-uniform behaviour
of MUC and randomization effect of RMUC.

Figures 2 - 5 present the learning curves (mean square
error (MSE) after phase correction versus the current block
iteration number �) averaged over 500 independent trials for
both MUC and RMUC for different� . The first row of pic-
tures corresponds to the particular user without specification
of which output this user is extracted at. The second row of
pictures corresponds to the users extracted at the indicated
outputs. One can see that although the randomization at the
orthogonalization stage leads to some accuracy degradation
for the signal extracted first, the proposed algorithm demon-
strates an overall performance improvement especially for
the short burst scenarios (� � �� and � � ���). Particu-
larly, the improvement can be observed for the signal recov-
ered last (last plot in the second row of pictures in Figures 2
- 5), which is our performance metric as formulated in Sec-
tion 1, as well as for average MSE for all users (first row of
pictures in Figures 2 - 5). The improvement decreases with
growing � because of the better accuracy at the prewhiten-
ing step.

5. CONCLUSIONS

The BSS problem for short burst systems has been addressed
by means of a CM technique under orthogonal constraints.
It has been shown that the conventional implementation of
the Gram-Schmidt orthogonalization proceduremay cause a
non-uniform misadjustment distribution among the receiver
outputs leading to an overall performance degradation. A
modified algorithm has been proposed, which is based on
random reordering of the weight vectors before the orthog-
onalization stage. Its efficiency has been demonstrated by
means of simulations in a short burst MIMO environment.

6. REFERENCES

[1] S.Haykin, “Unsupervised adaptive filtering, volume 1: blind
source separation”, John Wiley and Sons, Inc., 2000.

[2] Y.Li, K.J.R.Liu, “Adaptive blind source separation and equal-
ization for multiple-input/multiple-output systems”, IEEE
Trans. Inf. Theory, vol. 44, pp. 2864-2876, 1998.

[3] C.B.Papadias, “Globally convergent blind source separation
based on a multiuser kurtosis maximization criterion”, IEEE
Trans Sig. Proc., vol. 48, n. 12, pp. 3508-3519, 2000.

V - 811

➡ ➡



[4] P.Sansrimahachai, D.B.Ward, A.G.Constantinides, “Blind
source separation for BLAST”, in Proc. 14th Int. Conf. DSP,
pp. 139-142, 2002.

[5] B.Kim, D.C.Cox, “Blind equalization for short burst commu-
nications over frequency selective wireless channels”, in Proc.
IEEE 47th VTC, pp. 544-548, Phoenix, 1997.

[6] Y.Chen, J.C-I Chuang, K.B.Letaief, “Blind equalization for
short burst TDMA systems in wireless communications”, in
Proc. IEEE 47th VTC, pp. 535-538, Phoenix, 1997.

[7] A.M.Kuzminskiy, “Finite amount of data effects in spatio-
temporal filtering for equalisation and interference rejection
in short burst wireless communications”, Signal Processing,
Elsevier, vol. 80, n. 10, pp. 1987-1997, 2000.

[8] C.B.Papadias, A.Paulraj, “A constant modulus algorithm for
multi-user signal separation in presence of delay spread using
antennas arrays”, IEEE Signal Processing Letters, vol. 4, n. 6,
pp. 178-181, 1997.

[9] C.B.Papadias, H.Huang, “Linear space-time multiuser detec-
tion for multipath CDMA channels”, IEEE Journal on Se-
lected Areas in Communications (J-SAC), vol. 19, n. 2, pp.
254-265, 2001.

−2 0 2
−2

−1

0

1

2

M
U

C

1 output

−2 0 2
−2

−1

0

1

2
2 output

−2 0 2
−2

−1

0

1

2
3 output

−2 0 2
−2

−1

0

1

2
4 output

−2 0 2
−2

−1

0

1

2

R
M

U
C

1 output

−2 0 2
−2

−1

0

1

2
2 output

−2 0 2
−2

−1

0

1

2
3 output

−2 0 2
−2

−1

0

1

2
4 output

Fig. 1. Typical constellation pictures for� � ���
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Fig. 2. Learning curves for � � ��: MSE after phase
correction versus block iteration number
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Fig. 3. Learning curves for � � ���: MSE after phase
correction versus block iteration number
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Fig. 4. Learning curves for � � ���: MSE after phase
correction versus block iteration number
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Fig. 5. Learning curves for � � ���: MSE after phase
correction versus block iteration number
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