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ABSTRACT

In this paper , a kernel-based invariant subspace detection

method is proposed for small target detection of hyperspectral

images. The method combines kernel principal component

analysis (KPCA) and linear mixture model (LMM). The LMM

is used to describe each pixel in the hyperspectral images as 

mixture of target, background and noise. The KPCA is used to

build subspaces of target and background. A generalized 

likelihood ratio test is used to detect whether each pixel in

hyperspectral image includes target. The numerical

experiments are performed on   AVIRIS hyperspectral data 

with 126 bands. The experimental results show the

effectiveness of the proposed method and prove that this

method can commendably overcome spectral variability in the 

hyperspectral target detection, and it has good ability to

separate target from background. 

1. INTRODUCTION 

Relative to multispectral sensing, hyperspectral sensing

can increase the detectability of pixel size targets by

exploiting finer detail in the spectral signatures of targets and 

natural backgrounds [1,2]. Recently, hyperspectral target 

detection algorithms mainly include statistical classification

and spectra-based matched filtering approaches. Spectral

Angle Mapper (SAM) and Matched Filtering Detector

(MFD) are two classical approaches to detect full pixel 

targets from multispectral data [5], but they are usually

effectless for processing the scene of the mixed pixels.

Chein-I Chang firstly introduced the concept of the subspace

projection into multispectral image classification and

proposed the orthogonal subspace projection  (OSP) method.

Manolakis et al proposed a hyperspectral subpixel target

detection algorithm, based on the linear mixture model

(LMM) and generalized likelihood ratio test (GLRT) [1,2,6].

This algorithm uses the concept of subspace to describe 

target and background respectively and defines that a pixel is

composed of target, background and noise. This subspace 

model can better describe pixel information beyond subpixel

level. To overcome the effect of the spectral variability in

terms of target detection, Thai et al investigated an invariant 

subpixel material detection (ISMD) algorithm [4,7]. The 

algorithm uses a small number of target basis vectors to

define a target material subspace, and the defined target 

subspace contains material information over illumination and 

atmospheric conditions.
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In this paper, a new hyperspectral target detection

method is proposed and is called kernel-based invariant

subspace detection (KISD), which combines kernel principal 

component analysis (KPCA) with linear mixture model

(LMM). In terms of the current problems of the mixed pixel

and spectral variability in the hyperspectral target detection,

the LMM is used to describe each pixel in the hyperspectral 

image, and each pixel in the scene is considered as the 

combination of target, background and noise. The KPCA is

used to construct subspace of target and background, and

hyperspectral target detection is performed by introducing a 

generalized likelihood ratio test (GLRT).

2. Kernel-based Invariant Subspace Detection 

2.1. Linear mixture model

In hyperspectral target detection, the main task is to

detect, discriminate and identify materials. The concrete

processing includes two basic approaches: region-by-

region and pixel-by-pixel. The pixel-by-pixel processing

is necessary when the spatial resolution of images is low

and mixed pixels exist in the hyperspectral images. Thus,

identifying target pixel by pixel is a dependable approach 

in most case, and the detection algorithm is to estimate

whether a pixel is target or it includes target.

In the LMM, the spectrum of a mixed pixel is

represented as a linear combination of component spectra

(endmembers). The weight of each endmember spectrum

(abundance) is proportial to the fraction of the pixel area

covered by the endmember [2,3]. Assume that there are 

hyperspectral images with N bands.  Each pixel in the

hyperspectral images can be represented by N-dimensional

vector. Under such a circumstance that a pixel in the 

hyperspectral images is considered in terms of the task of

pixel target detection, it is assumed that each pixel includes 

background and noise, and possibly includes target. Thus,

the linear spectral mixing of the pixel can be expressed by

nBTy                              (1) 

where T and B represent the target and the background 

respectively, the , represent the abundance of target
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and background respectively, and the n is noise fraction.

Generally, it is assumed that the number of the target is 

less than or equal to one in each pixel, and the number of

the background exceeds one. 

2.2. Constructing subspace by using KPCA 

In practice, the spectrum of the same material changes 

with atmospheric conditions, illumination, and other

factors. This variability can be described using a statistical

distribution or a linear subspace with a dimension less

than the number of bands. One way to obtain such a 

subspace is to use principal component analysis (PCA)

[4,7]. But PCA is linear transform and cannot better

extract useful features from the hyperspectral images with 

nonlinear characteristics. Therefore, in the KISD method,

KPCA[8] is introduced to construct linear subspace of the 

target and background in high dimensional feature space. 

Given a set of centered random samples

. Firstly, the

sample set is mapped into a feature space 
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Let be an eigenvector of V 0V  that

corresponds to positive eigenvalue  of . So the 

eigenvector is in the space spanned by the mapped samples,

i.e. xx nxspan ,,V , 21 . This can be described as 

n

i

ii x
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V                          (3) 

Thus, eigenvalue decomposition can be written as 

VV                                 (4) 

Furthermore, we multiply by x at both sides of 

equation (4) and obtain the expression as

VV xx                       (5) 

For the all n eigenvectors, expression (5) can be also

written as 
kk xx VV                     (6) 

where k , V .n,,2,1

n

i

i
k
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According to the kernel function constructing

method, define a dimensionality of kernel matrix

in feature space as

nn K

jijiji xxkxx ,,K                          (7) 

and consider an eigenvalue decomposition for the

expansion coefficients  by using kernel matrix K  as k

kk K ,             (8) 
Tk

n
kkk ,,, 21

The obtained solution k
k , needs to be normalized by

imposing 1

cK

kk
k and to be centered by

substituting centered  for the K . The  is given bycK

nnnnc 1111 KKKKK                  (9) 

where 1  is n nn matrix, of which all elements are equal

to n1 .

To obtain a new feature of the samples, which

projects the mapped sample x  on vector  is 

necessary, namely,
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Because the expansion coefficient  is 

obtained by solving the eigenvalue of matrix K , so such 

expansion coefficients are useless in the weighting

mapped samples if

nkk ,2,1

c

nkk ,,2,1

c

is corresponding to

zero eigenvalues of matrix K . To avoid the occurrence

of this situation, a matrix decomposition is introduced to

further reduce computational loads.

According to matrix theory, any real symmetric and

positive semidefinite matrix H  with rank  can be

diagonalized as 

q

nqqq
T

qnnn UQUH                        (11) 

where is a nonsingular diagonal matrix with rankQ

nqq containing only the positive eigenvalues of H . is

a row orthogonal matrix, i.e. UU  and  row vectors

of  are corresponding eigenvectors.

U

q
T

I q

U

Without loss of generality, it is supposed that all 

eigenvalues of kernel matrix K  are c 021 n

q

.

Substituting the spectral decomposition for the eigenvalue

decomposition of kernel matrix K in the centered PCA 

method, we can obtain nonsingular diagonal matrix K

with rank

c

nqq and the expansion coefficients

q,kk ,2,1 that are eigenvectors of K . Thus the

equation (10) can be simplified as 

q

q

i

i
k
i

k xxkxS

1

,V              (12) 

where nqqk ,,2,1 .

Thus linear kernel subspace in high dimensional

feature space is obtained by KPCA. Using such a

processing can obtain the linear kernel subspace of the

target and background respectively.

2.3. Kernel-based invariant subspace detection 
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Using the linear mixture model (1) and substituting the

kernel subspace of target and background for the original

subspace, the hyperspectral target detection can be

described as the following hypothesis test

H0: nBy kk

H1:                          (13) nBTy kkkk

where Tk and Bk represent the target and the background

respectively, and the , represent the abundance of 

target and background respectively, and the n is Gaussian 

white noise fraction. Thus the likelihood ratio is given

k k

00

11

Hp
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y

y
                                   (14) 

where 00 Hyp  and 11 Hyp are the conditional 

probability density function of the observation y under 

two hypothesis tests of H1 and H0 respectively [4,7]. 

The reference [4] provides a concrete expression of 

the generalized likelihood ratio as the following

yAAIy

yBBIy
T

TT

yL
~

                               (15) 

where , Ak
+  is the pseudo-inverse of Ak, and 

I is the identity matrix. Using the Gram-Schmidt process

can extract matrix Qk from Ak, of which orthonormal

columns span the same subspace as the columns of Ak.

Thus expression (15) can be modified as the following
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                              (16) 

The expression (16) can be used as a discriminant to

detect hyperspectral small target pixel by pixel. If the

likelihood ratio in the expression (16) exceeds the detection

threshold in terms of a pixel, it can be concluded that the

pixel includes target. Otherwise, it can be considered that 

there is no target in the pixel. So the kernel-based invariant 

subspace target detection is realized. 

The main procedure of the KISD can be summarized

in the following steps. Firstly, the KPCA is used to

calculate the kernel subspace Tk and Bk of the target and 

background on their sample data. Secondly, Tk and Bk are 

used to construct full subspace matrix Ak, and Qk is 

obtained by using the Gram-Schmidt processing on Ak.

Thirdly, the likelihood ratio is calculated by using the

expression (16). Finally, the target detection is performed,

based on the likelihood ratio calculated.

Generally, the sample data of the target are known, 

and the sample data of the background are uniformly

selected from the hyperspectral images.

3. EXPERIMENTS AND RESULTS 

3.1. Data description 

In order to test the effectiveness of the proposed method for 

HTR, the numerical experiments are performed on AVIRIS 

data, which is an AVIRIS data set of naval military base

acquired in San Diego, USA. After removing those bands 

that are corresponding to the water absorption regions, low

SNR and bad bands, we remain 126 bands available in the

0.4–1.8 m wavelength range. A scene of 100 100  pixels

was selected for our experiments, in which there are three 

small planes as targets for our detection. The ground

sampling distance of those hyperspectral images is 3.5m.

3.2. Experiments and discussion of the results 

In the experiments, in order to test the ability of the

proposed algorithm in terms of spectral variability, 3

classes of different ground covers are randomly selected

as the training samples of the background (non-target),

and the training samples of target and background are

obtained from spectral library. Figure.1 provides spectrum

of two target samples that are randomly selected from the

target training set. By comparing the spectrum of two 

targets, it can be found that the spectral difference is great.

In order to prove the effectiveness of the proposed

algorithm, ISMD, MFD and OSP are realized in the

experiment to be compared with the proposed method. In

proposed kernel-based methods, a radial basis function

kernel is used, which is defined as 

2

2

2
exp,

yx
yxK                              (17) 

where  set to 200 in the experiments.

The detection results of the four algorithms show in

the Figure.2. The dimensionality of the target subspace in 

four algorithms is one and the dimensionality of the

background subspace is selected as 1, 5, and 10 in each

algorithm respectively. From the corresponding detection

result, it can be found that the separability between targets 

and background of the proposed algorithm and ISMD is

better than the MFD and the OSP. This indicates detection

ratios of the proposed algorithm and ISMD are higher

than the MFD and the OSP. In addition, it also can be

found that the detection result obtained by the proposed

algorithm under different numbers of the background

subspace is almost identical.  This indicates the

construction of the background subspace in the proposed

algorithm is more effective than the other algorithms.

Fig 1. Spectral variability of targets from two different pixels
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MSD-1                 MSD-2                     MSD-3

OSP-1                   OSP-2                     OSP-3

ISMD-1                   ISMD-2                     ISMD-3

KISD-1                   KISD-2                   KISD-3

Fig 2. The detection result by using four algorithms. The 

dimensionality of the background subspace is 1, 5 and 10 respectively.

In order to describe the false detection ratio, an 

evaluation rule is defined as 

t

f
fdr

NN

N
P                                        (18) 

where Nf  is the number of the detected non-targets, N is total

number of the image pixels and the Nt is the number of the

target pixels resident in the testing scene. The Table1 gives the

numerical comparison of four algorithms in terms of the false

detection ratio where horizontal grid describes the number of 

the detected pixels that include true and false targets.

According to the experimental data from Table1, it is

clearly found that the false detection ratio of the proposed 

algorithm is less than the other three algorithms whereas

same number of pixels that possibly includes true and 

false targets is detected. 

4. CONCLUSION 

In this paper, a kernel-based invariant subspace 

detection (KISD) method is proposed for target detection of 

hyperspectral images. The method combines KPCA and

LMM. In the method, KPCA is used to build the kernel

subspace of target and background. The experimental results 

prove that this method has good ability to construct 

background subspace and can greatly overcome the spectral

variability in the hyperspectral target detection. In terms of

the false detection ratio, the proposed KISD method is better

than the other.

Table 1 Comparison of the false detection ratio between four algorithms 

Pfdr(10-3) MSD OSP ISMD KISD

70 13.09 11.48 4.431 4.030

71 13.00 11.58 4.330 4.130

72 13.09 11.68 4.230 4.030

73 13.19 11.78 4.330 4.130

74 13.29 11.88 4.431 4.230

75 13.39 11.98 4.532 4.330

76 13.49 12.08 4.632 4.431

77 13.60 12.18 4.733 4.532

78 13.70 12.28 4.834 4.431

79 13.80 12.38 4.935 4.532T
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80 13.90 12.48 5.035 4.632
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