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Abstract— This paper presents a novel feature selection method
which is named Filtered and Supported Sequential Forward
Search (FS SFS) in the context of Support Vector Machines
(SVM). In comparison with conventional wrapper methods em-
ploying the sequential forward search (SFS) strategy, it has two
important properties that reduce the computation time of SVM
training during the feature selection process. First, in stead of
utilizing all the training samples to obtain the classifier, FS SFS,
by taking advantage of the existence of support vectors in SVM,
dynamically maintains an active data set for each SVM to be
trained on. In this way the computational demand of a single
SVM training decreases. Secondly, a new criterion, in which
discriminant ability of individual features and the correlation
between them are both taken into consideration, is proposed
to effectively filter out non-essential features before every SFS
iteration begins. As a result, the total number of training is
significantly reduced. The proposed approach is tested on both
synthetic and real data to demonstrate its effectiveness and
efficiency.
Index Terms— feature selection, sequential forward search (SFS),
support vector machines (SVM), FS SFS.

I. INTRODUCTION

Feature dimensionality reduction is of considerable im-
portance for two primary reasons: reduce the computational
complexity and improve the classifier’s generalization abil-
ity. Feature selection addresses the dimensionality reduction
problem by determining a subset of those features which is
most essential for classification. Based on the criterion for
subset evaluation, feature selection approaches can be grouped
into two categories: filter methods and wrapper methods [1].
Acquiring no feedback from classifiers, filter methods estimate
the classification performance by some indirect assessment
such as distance measures. Wrapper methods, on the contrary,
are classifier-dependent. They evaluate the “goodness” of the
selected feature subset directly based on the classification
accuracy, which would intuitively yield better performance. As
a matter of fact, experimental results are in general reported
in favor of the wrapper methods [1] [2] even though more
computational cost is needed.

As a state-of-art classifier, Support Vector Machines (SVM)
has been successfully applied in a variety of areas [3]–[5].
However, given the fact that training just a single SVM would
impose a lot of computation when the number of training
samples is large, the integration of SVM and wrapper methods,
which calls for multiple times of SVM training process, might

be computationally infeasible. In this paper we present a
expedited wrapper method for SVM which is named Filtered
and Supported Sequential Forward Search (FS SFS). As its
name suggests, this new wrapper feature selection method
employs sequential forward search strategy (SFS), but it has
the following advantages over the conventional wrapper/SFS
method:

1) FS SFS combines the advantages of filter and wrapper
methods by introducing a filtering process for each SFS
iteration;

2) FS SFS introduces a new criterion that is computation-
ally simple and considers both discriminant ability of
individual features and the correlation between them;

3) FS SFS improves the efficiency of obtaining a single
SVM classifier by dynamically maintaining a small
active training set.

The rest of the paper is organized as follows. Section II
gives a brief introduction of SVM and Section III explains
FS SFS in detail. Experimental results are given in section IV
followed by conclusions and discussions in section V.

II. SUPPORT VECTOR MACHINES

SVM is a state-of-art learning machine based on the struc-
tural risk minimization induction principle. Here we only give
a very brief review while the detailed description can be found
in [6]. Consider N training sample pairs

{X(1), Y (1)}, {X(2), Y (2)}, . . . , {X(N), Y (N)},
where X(i) is a k-dimensional feature vector representing the
ith training sample, and Y (i) ∈ {−1, 1} is the class label of
X(i).

A hyperplane in the feature space can be described as
the equation W · X + b = 0, where W ∈ Rk and b is
a scalar. When the training samples are linearly separable,
SVM yields the optimal hyperplane that separates two classes
with no training error and maximizes the minimum distance
from a point X(i) to the hyperplane by solving the following
optimization problem:

Minimize : f(W ) = 1
2 ‖W‖2

Subject to : Y (i)
(
W · X(i) + b

) ≥ 1, i = 1, ..., N. (1)

For linearly nonseparable cases, there is no such a hyperplane
that is able to classify every training point correctly. However
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Fig. 1. The outline of the proposed method for feature selection for SVM.

the previous idea can be generalized by introducing the
concept of soft margin. Thus the new optimization problem
becomes

Minimize : f(W, ξ) = 1
2 ‖W‖2 + C

∑N
i=1 ξ(i)

Subject to : Y (i)
(
W · X(i) + b

) ≥ 1 − ξ(i), i = 1, . . . N,(2)

where ξ(i), is called a slack variable and related to the soft
margin. Both optimization problems (1) and (2) can be solved
by introducing the Lagrange multipliers α(i) that reduces them
to quadratic programming problems.

In the classification phase, a point X̃ in the feature space
is assigned a label Ỹ according to the following equation:

Ỹ = sgn
[
W · X̃ + b

]
= sgn[

∑N
i=1 α(i)Y (i)

(
X(i) · X̃)

+ b]. (3)

III. FS SFS: FILTERED AND SUPPORTED

SEQUENTIAL FORWARD SEARCH

A. Algorithm Review of FS SFS

The outline of the proposed method is shown in Fig. 1. The
filtering part in our approach, acting in the generic way similar
to a filter method, ranks features without involving the clas-
sifier. The features with relatively high ranks are considered
as “informative” feature candidates and then re-studied by the
wrapper part that further investigates their contributions to a
specific classifier. This combinational framework delivers as
good performance as the conventional wrapper method but is
computationally simpler.

Now with the framework determined, the feature selection
problem is reduced to a search problem to find the optimal sub-
set [7]. Many search strategies have been proposed [8]–[10],
and we adopt a suboptimal search method called sequential
forward search (SFS) [10] algorithm for its simplicity and
effectiveness proven in many applications. In the following
three subsections, we will explain how FS SFS works in detail.

B. F SFS: Filtered SFS Using a New Criterion

Evidently an effective filtering criterion is needed since it is
undesirable if many informative features are discarded by the
filtering process. Also the criterion should be simple to avoid
excessive computational cost. To address this problem, we
propose the following new filtering criterion, which considers
both the discriminant ability of individual features as well as
the correlation between them. Also it is simple to calculate.

Suppose we have obtained a feature combination Fs =
{fn1 , fn2 , . . . , fsd

} and one more feature is to be selected.
We evaluate the importance of each individual feature fi by a
score, which is denoted as Ri,Fs

and is calculated as follows.

1) discriminant ability of individual features
The discriminant ability of feature fi is described by

Di =
|mi

1 − mi
2|

stdi
1 + stdi

2

, (4)

where mi
1 and stdi

1 (mi
2 and stdi

2) are the mean and
standard deviation of the samples belonging to class 1
(-1) when only feature fi is considered.

2) correlation between features
First we define the correlation coefficient ρi,j between
two features, say fi and fj .

ρi,j =
2∏

c=1

ρ
(c)
i,j =

2∏
c=1

cov
(
Sc(fi), Sc(fj)

)
√

var
(
Sc(fi)

)
· var

(
Sc(fi)

) (5)

where Sc(fi) = {xfi
(l)|Y (l) = c} is the vectors that

represented by feature fi and labeled as class c.
Then based on ρi,j , we define the correlation coefficient
between fi and Fs as

ρi,Fs
= max

fj∈Fs

|ρi,j |. (6)

It is desirable to select the features that can individually
separate the classes well but has small correlation with the
feature set that has been obtained. Thus the final score assigned
to fi is defined as:

Ri,Fs
=

Di

max{Dl} − |ρi,Fs
|, (7)

where Di is normalized such that it is in the same range as
|ρi,Fs |.
C. S SFS: Supported SFS in the Context of SVM

In SVM there is an special group of training samples named
“support vectors”, whose corresponding coefficients α(i) in
Eq. (3) are non-zeros. In other words, samples other than
support vectors have no contribution to determining the deci-
sion boundary. Since usually the number of support vectors is
relatively small, we could train SVM just by using the support
vectors. Following this idea, we propose the supported SFS
algorithm, which dynamically maintains an active training
set as estimated candidates of the support vectors, and trains
SVM using this reduced subset rather than the whole original
training set. In this way, we are able to find the boundary with
less computational cost.

The procedure of S SFS is described as follows. The first
step is to select the best single feature. To do so, we train SVM
k times, each of which uses all the training pairs available but
only considers the individual feature fi. Mathematically the
initial feature combination set is F i

1 = fi, fi ∈ F, and the
active training set is V i

1 = {1, 2, . . . , N}.
Although in this step every training pair in S is evolved in

this initial training task, the computational complexity is not
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high because the input vector is just one-dimensional. After
the training, each single-feature combination F i

1 is associated
with a margin value M i

1 and a group of support vectors vi.
The feature that yields the smallest margin

j = arg min
i∈{1,2,...,N}

M i
1 (8)

is then chosen as the best single feature. Thus we obtain the
initial feature combination F1 = {fj} and its active training
set V1 = {vj} for the next step.

At step n, we have already obtained the feature combination
Fn that contains n features, and the active training set Vn.
To choose one more feature into the feature combination set,
we add each remaining feature fi one by one and construct
the corresponding active training set for every new feature
combination as follows:{

F i
n+1 = Fn ∪ {fi}, for fi ∈ F av

n ,
V i

n+1 = Vn ∪ {vi}. (9)

where F av
n = {fr | fr ∈ F and fr �∈ Fn} is the collection of

the available features to be selected from.
For each F i

n+1 we train SVM using the samples in V i
n+1.

The resulting margin and the collection of the support vectors
are denoted as M i

n+1 and SV i
n+1, respectively. Then the

feature fj that yields the combination with the least margin as

j = arg min
fi∈F av

n

M i
n+1 (10)

is selected, and accordingly the new feature combination Fn+1

and new active training set Vn+1 are obtained as follows:{
Fn+1 = F j

n+1,

Vn+1 = SV j
n+1.

(11)

The SFS process continues until no significant margin reduc-
tion is found or the desired number of features is obtained.

D. FS SFS: the Integration of F SFS and S SFS

The integration of F SFS and S SFS is quite straightforward
for which the basic idea is discarding the features with low
scores that have been computed according to Eq. (7) so as to
reduce the number of features S SFS has to evaluate. Again
suppose we are at step n of SFS with Fn and Vn available,
and FS SFS works as follows:

1) calculate the score Ri,Fn for each remaining feature fi;
2) select Kn highest scored features to construct F av

n ;
3) determine the next feature to be added using Eq. (9) and

Eq. (10);
4) update the active training set using Eq. (11).
Kn here is the tuning parameter to balance between the

performance and the algorithm complexity. In our experiments,
Kn is set to � |Fn|

2 � such that half of the available features are
discarded at every SFS iteration step.

IV. EXPERIMENTAL RESULTS

In the experiments, the proposed feature selection method
is applied to both synthetic and real-world data sets. For all
the experiments, the SVM optimization is achieved by using
SVMTorch [11].

A. Results on Synthetic Data

Three series of experiments are carried out on the synthetic
data sets, and for each experiment we sample N vectors X =
(x1, x2, . . . , xk) from two classes (class 1 or class -1) in a k-
dimensional data space. The components xi are independent
Gaussian variables whose distributions are designed as:

p(xi) =

{
1√

2πσi
exp(xi−1

2σ2
i

), if X belongs to class 1;
1√

2πσi
exp(xi+1

2σ2
i

), if X belongs to class -1,
(12)

where σi = 0.5 · 2(i−1) and i = 1, 2, . . . , k.
The first experiment is a 2-D case where k = 2 and N =

100. Fig. 2 shows how the active training set changes when
features are added one by one into the candidate feature set
F . FS SFS is also tested in a 3-D case where k = 3 and
N = 100. In both 2-D and 3-D scenarios, we observe that
with our experiment setting FS SFS and the conventional SVS
methods generate exactly the same support vectors .

In the third experiment, we test FS SFS in a 10-dimensional
case where k = 10 and N = 250. According to Eq. (12), if
i < j the variance of feature xi is larger than that of xj , and
therefore xi has more discriminant ability. For that reason, we
expect xi to be selected before xj . For display purpose, we
assign a feature xi a point as 11 − pos(xi), where pos(xi)
is the order of xi selected. For example, if xi is the number
one selected feature component, its point would be 10. Fig.
3(a) gives the ideal point of xi. Fig. 3(b) and Fig. 3(c) show
the actual points of the features, which are averaged over 100
trials, when SFS and FS SFS are applied, respectively. As one
can see, FS SFS is able to achieve similar results of SFS with
lower computational cost.

B. Results on Real-World Data

The proposed algorithm is applied to four real-world data
sets obtained from the widely-used UCI (University of Cali-
fornia, Irvine) repository of machine learning [12]. These data
sets are:

1) the BUPA Liver Disorders data set (BUPA Liver) which
contains 354 instances with 6 features;

2) the Wisconsin Breast Cancer data set (BCW) which
contains 683 instances with 9 feature;

3) the data of letter ’A’ and ’B’ from Letter Image Recogni-
tion data set (A-B-letter) which contains 1555 instances
with 16 feature;

4) the Johns Hopkins University Ionosphere data set (Iono-
sphere) which contains 351 instances with 34 feature.

For each data set we randomly set aside 20% instances as
the testing samples, and the rest as the training samples. The
results are listed in Table I. As one can see, FS SFS improves
the efficiency of SFS without sacrificing the accuracy of either
the selection or the classification.

V. CONCLUSIONS

In this paper, we present a novel feature selection method
for SVM. By introducing a feature pruning process, we filter
out “uninformative” features to reduce the required number of
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Fig. 2. The active training set (circled) maintained by S SFS of a 2-D case. (a) v1, which is the support vectors obtained by considering only feature x1.
(b) v2, which is the support vectors obtained by considering only feature x2. (c) The support vectors obtained by training SVM on V = v1

⋃
v2.
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Fig. 3. The points of feature components. (a) The ideal points. (b) The points obtained by using SFS. (b) The points obtained by using FS SFS.

TABLE I

COMPARISON OF CLASSIFICATION ACCURACY AND RUN TIME BETWEEN FS SFS AND SFS OVER 10 TRIALS.

number of features classification accuracy (%) Run Time (seconds)
training testing

available selected FS SFS SFS FS SFS SFS FS SFS SFS FS SFS/SFS

BUPA Liver 6 4.6 78.7% 78.5% 70.2% 70.7% 4.31 6.08 71%
BCW 9 5.5 97.4% 97.4% 96.3% 95.4% 10.61 13.31 79.7%

A-B Letter 16 6.2 99.95% 100% 99.7% 99.8% 48.8 65.0 72%
Ionosphere 34 10.0 98.9% 99.3% 92.0% 90.6% 81.5 118.9 68.5%

training. We also develop a new feature ranking criterion, in
which not only the class separability of individual features but
also the correlation between features are taken into account, to
make the pruning process more effective. Furthermore, during
the SFS searching process, an active training set is maintained
as the estimated candidates of the support vectors. Whenever
SVM has to be trained, it is done over the reduced training set.
In this way, the number of samples participating in a single
optimization procedure decreases and therefore the training
process is expedited. We test the proposed method on both
artificial and real-world data sets, and the experimental results
demonstrate its effectiveness and efficiency.
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