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Abstract

The problem of optimizing functionals with linear or orthog-

onal constraints arises in many applications in engineering

and applied sciences. In this paper, a unified framework in-

volving constrained optimization using gradient descent in

conjunction with exact or approximate line search is de-

veloped. In this framework, the optimality conditions are

enforced at each step while optimizing along the direction

of the gradient of the Lagrangian of the problem. Among

many applications, this paper proposes learning algorithms

which extract principal and minor components, reduced rank

Wiener filter, and the first few minimum or maximum sin-

gular vectors of rectangular matrices. The main attrac-

tion of these algorithms is that they are matrix inverse free

and thus are computationally efficient for large dimensional

problems.

1. Introduction

Constrained optimization over linear and orthogonal (or

unitary) constraints arises in many applications in applied

physics, control theory, and signal processing. For exam-

ple, optimization of symmetric Rayleigh quotient over the

unit sphere yields the minimum and maximum eigenvalue

of a symmetric matrix. In the signal processing field, there

are numerous problems that can be formulated as optimiza-

tion problems over orthogonal constraints. These problems

include: minor and principle subspace computation [1], mi-

nor and principal subspace tracking [2], adaptive subspace

computation, canonical correlation analysis [3], and reduced

rank Wiener filtering [4,5]. Numerical methods for con-

strained optimization can be found in [6, 7].

We present in this paper new methods of computing and

solving optimization problems using constrained gradient

descent of the Lagrangian in conjunction with exact and

approximate line search. Thus these approaches may be

considered as constrained iterative gradient descent meth-

ods.

2. Problem Formulation

Consider the following optimization problem

Optimize F (x) subject to xT x = Ir, (1)

where F is at least twice continuously differentiable real

valued function, x ∈ IRm×r, Ir stands for the identity ma-

trix of size r, and {.}T denotes matrix transpose. Define

the Lagrangian as

L(x, λ) = F (x) − trace{(xT x − Ir)
λ

2
}, (2)

where λ is a matrix of Lagrange multipliers. The necessary

condition for optimality is that ∇L = 0, where

∇L =

[
∇xF (x) − xλ

xT x − Ir

}
. (3a)

At an optimal solution x, the Lagrange multiplier λ may

be expressed as

λ = xT∇xF (x). (3b)

Substituting this expression in (3a) yields

∇xL = ∇xF (x) − xxT∇xF (x) = (Ir − xxT )∇xF (x). (4)

Note that Ir−xxT is projection on the sphere defined by

the constraint xT x = Ir. Thus in any application of gradi-

ent descent, one may use (Ir−xxT )∇xF (x) as a constrained

gradient. Now assume that an approximate solution matrix

x is given and assume that λ has been computed as in (3b).

Then, for a given nonzero direction matrix h, we are inter-

ested in computing α ∈ IRr×r so that L(x+hα) is minimum.

Clearly, the Taylor expansion of L(x+hα) around x is given

by

L(x + hα) = F (x) + DxF (x)hα +
1

2
αT hT∇2

xF (x)hα + h.o.t.

− trace{xT x
λ

2
+ αT hT x

λ

2
+ xT hα

λ

2
+ αT hT hα

λ

2
},

(5a)

where h.o.t. stands for cubic and higher order terms. Ig-

noring the higher order terms, it follows that

(
∂L(x + hα)

∂α
)T = DxF (x)h+hT∇2

xF (x)hα−hT xα−hT hαλ.

(5b)
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When F is quadratic function of x, the Kronecker product

may be used to obtain an exact solution to the system;
∂L(x+hα)

∂α
= 0. Specifically, vec(α) is a solution for the

linear system:

((Ir⊗hT D2
xF (x)h)−(λT⊗hT h))vec(α) = vec(hT xλ−hT∇xF (x)).

(6)

Here vec stands for the operation of stacking the columns

of a matrix into one column, and ⊗ denotes the Kronecker

product. The expression in (6) can be further simplified by

choosing h = ∇xL(x, λ), in which case xT h = 0. Once α is

computed, then x can be updated as

x′ = x + hα. (7a)

If r = 1, i.e., x is a vector, then the scalar α can be

obtained as

α = −(hT∇2
xLh)−1hT h, (7b)

where ∇2
xL = ∇2

xF (x) − λIr. If α is chosen to be fixed at

each stage, then the above procedure reduces to the con-

strained gradient descent.

3. Applications

In this section we present a few signal processing applica-

tions where the proposed methods can be utilized.

Application 1: Generalized Minimum Subspace
Computation

Given two square matrices A and B, the generalized eigen-

value problem consists of finding a nonzero vector x and

corresponding λ such that

Ax = Bxλ.

Clearly, λ = xT Ax
xT Bx

and hence the maximum and minimum

generalized eigenpairs can be obtained by solving the con-

strained optimization problem:

Optimize {xT Ax subject to xT Bx = 1}.
There are many situations where it is required to obtain

only a small number of lowest or largest generalized eigen-

pairs. One can repeatedly solve the above optimization

problem restricting x to the space orthogonal to the previ-

ous subspace. It is also possible to compute the r smallest or

largest generalized eigenpairs simultaneously by considering

the corresponding subspace as a whole. This is especially

advisable in situations where the problem has multiple or

clustered eigenvalues in which case it is recommended to

compute the whole invariant subspace spanned by the cor-

responding generalized eigenvectors.

The general form of the generalized multi-dimensional

extremum subspace computation can be expressed as an

optimization problem:

Optimizex Trace{xT Ax, subject to xT Bx = Ir, (8)

where A is symmetric and B is positive definite of size m.

This problem can be shown to be equivalent to optimizing

trace{(xT Ax)(xT Bx)−1} over all non zero vectors x.

Let L(x, λ) = 1
2
trace{xT Ax}− trace{(xT Bx− Ir)

λ
2
} be

the Lagrangian, then a necessary condition for optimality

is that

∇xL(x, λ) =

[
Ax − Bxλ
xT Bx − Ir

]
= 0.

A steepest descent method would search a new minimum

along h, x′ = x + hα with a (small) coefficient matrix α ∈
IRr×r. The matrix α is required to minimize L(x + hα, λ)

with respect to r×r matrix α, where λ = (xT Ax)(xT Bx)−1.

The exact solution for α can be computed from the equation

hT Ax + hT Ahα − hT Bxλ − hT Bhαλ = 0.

A natural choice for h is h = Ax − Bx(xT Bx)−1xT Ax.

The updated solution is then given by x1 = x + hα. This

solution must then be normalized to a new matrix y so that

yT By = I. One approach is to use

y = x1(x
T
1 Bx1)

−1
2 .

Note that the matrix (xT
1 Bx1) is of relatively small size

r × r. When r = 1, i.e., x is one dimensional, then α =

− hT (A−λB)x

hT (A−λB)h
.

A Special Case: If B = I, then a formulation for com-

puting an orthogonal basis of a principle subspace of rank

r can be obtained by solving the optimization problem:

Optimize {xT Ax subject to xT
i xj = δij , i, j = 1, · · · , r.}

(9)

A Lagrangian of this problem is

L(x, λ) =
1

2
trace{xT Ax} −

r∑
i=1

r∑
j=1

λij

2
(xT

i xj − δij .) (10)

It can be shown that ∇xjL = Axj − ∑r

i=1
xiλji, for

j = 1, · · · , r. At optimal solutions, the following relations

hold:

λij = xT
i Axj .

If L(x, λ) is optimized along the directions hi by optimizing

L(xi + αhi, λij), then α can be obtained by solving the

equation:

α

r∑
i=1

hT
i Ahi +

1

2

r∑
i=1

hT
i Axi +

1

2

r∑
i=1

xT
i Ahi − 2α

r∑
i=1

r∑
j �=i

λij

2
hT

i hj

−
r∑

i=1

r∑
j �=i

λij

2
hT

i xj −
r∑

i=1

r∑
j �=i

λij

2
xT

i hj − 2α

r∑
i=1

λii

2
hT

i hi

− 2

r∑
i=1

λii

2
hT

i xi = 0.

(11)

The above development can be summarized in the fol-

lowing algorithm.

Algorithm 1
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1. Let x1(0), x2(0)...., xr(0) be a random set of orthogonal

unit vectors

2. For j = 1, 2, · · · , r, let λij = xT
j (k)Axj(k) and set hj =

∇xj(k)L = Axj(k) − ∑r

i=1
xi(k)λji, for j = 1, · · · , r.

3. Solve (11) for α and set xj(k + 1) = xj(k) + hjα.

4. Let B = [x1(k + 1) x2(k + 1) ... xr(k + 1)] and use

Gram-Schmidt process to orthogonalize B.

5. Stop if convergence is satisfactory, otherwise go to 2.

Note that Step 4 can accomplished in many different

ways. For example B(BT B)−
1
2 is an orthogonal matrix.

Another way is to compute the QR factorization of B so

that B = QR, where Q is an orthogonal matrix.

Application 2: Singular Value Decomposition

Singular value decomposition (SVD) is one of the most im-

portant tools of matrix algebra that has been applied to

a number of areas including principal component analysis,

canonical correlation, the determination of the MoorePen-

rose generalized inverse, and low rank approximation of ma-

trices. Many computational aspects of SVD are discussed

in [8].

Let the singular triplet (u, v, σ) denote the right, left

singular vectors corresponding to the singular value σ of a

given a matrix A ∈ RM×N . The maximum and minimum

singular triplets (u, v, σ) can be obtained as a solution of

the optimization problem

Optimize { uT Av√
uT u

√
vT v

u �= 0, v �= 0, } (12a)

or equivalently,

Optimize {uT Av subject to uT u = 1, vT v = 1} (12b)

Let

L = uT Av − (uT u − 1)
λ1

2
− (vT v − 1)

λ2

2
(13)

be the Lagrangian, then a necessary condition for optimal-

ity is that

∇xL(u, v, λ1, λ2) =

[
Av − uλ1

AT u − vλ2

]
= 0. (14)

If (u, v, λ1, λ2) is an optimal solution, then

λ1 = uT Av

λ2 = vT AT u.
(15)

Now given an approximate singular vectors u and v,

let h1 = Av − u(uT Av) = (I − uuT )Av and h2 =

AT u − v(vT AT u) = (I − vvT )AT u be descent directions.

A better approximation can be obtained by minimizing

L(u + αh1, v + αh2) over α

L(u + αh1, v + αh2) = (u + αh1)
T A(v + αh2)

− (u + αh1)
T (u + αh1)

λ1

2
− (v + αh2)

T (v + αh2)
λ2

2
.

(16)

Note that vT h2 = uT h1 = 0. It can be shown that

α = − hT
1 h1 + hT

2 h2

2hT
1 Ah2 − hT

1 h1λ1 − hT
2 h2λ2

Hence the updated singular vectors are given by:

u′ = u + αh1,

v′ = v + αh2.

This process can be repeated until convergence.

There are different applications where only right or left

singular vectors are required. Assume that we would like

to compute the maximum singular vector u. In this case,

u is an eigenvector of AAT , i.e., AAT u = σ2u for some σ.

Thus u is the solution of the problem

Optimize {uT AAT u subject to uT u = 1, }

which can be solved using the method outlined in Applica-

tion 1.

Remark 1: If u is a left singular vector, then AT u is an

eigenvector of AT A. This can be shown by multiplying both

sides of AAT u = λu by AT so that (AT A)AT u = λAT u.

This means that if u is an eigenvector of AAT u = λu, then

AT u is an eigenvector of AT A, i.e., v = AT u√
uT AAT u

. The

significance of this observation is that AT A is N×N matrix

while AAT is M × M . The following algorithm exploit the

above remark to extract the largest singular value and left

singular vector of A. The most significant feature of this

method is that it is inverse free and relies only on matrix-

vector multiplication.

Algorithm 2

The input is a symmetric matrix A and the output is the

largest singular value and singular vector of A.

Step 1 : Given a unit vector 0 �= x(1), randomly generated

Step 2 : for k = 1, 2, · · · compute

u(k) = Ax(k)

λ(k) = u(k)T u(k)

h(k) = AT u(k) − x(k)λ(k)

v(k) = Ah(k)

a0 = −2(hT h)(uT v),

a1 = vT v − (uT u)(hT h),

a2 = 2uT v

α =
−a1 −

√
a2
1 − a0a2

a0

Step 3 : y(k) = x(k) + h(k)α

Step 4 : x(k + 1) =
y(k)√

y(k)T y(k)
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Remark 2: If α in Algorithm 2 is computed as α =
−a1+

√
a2
1−a0a2

a0
, then x(k) converges to the minimum sin-

gular vector of A.

Application 3: Reduced Rank Wiener Filtering

Given two signals x(n) and y(n), the aim here is to find a

rank r minimizer Wr that minimizes

Qxx(Wr) = E(||x(n) − Wry(n)||2) Wr has rank r.

The computation of reduced rank Wiener filter Wr = σuvT

of rank 1 can be posed as a constrained maximization prob-

lem as

Maximize {uT Rxyv : uT u = 1, vT R2
yyv = 1}. (17)

The Lagrangian of this problem is given by

L = uT Rxyv − (uT u − 1)
λ1

2
− (vT R2

yyv − 1)
λ2

2

The optimality conditions are

Rxyv − λ1u = 0

Ryxu − λ2R
2
yyv = 0,

for some Lagrange multipliers λ1 and λ2. There are many

versions for the maximization problem (17). For example

uT Rxyv can be replaced by d(uT Rxyv)l, where d = 1 if

l > 0 and d = −1 if l < 0. Another choice is ln(uT Rxyv).

Algorithm 3:

1. Given initial guesses u, v, compute

λ1 = uT Rxyv

λ2 =
vT Ryxu

vT R2
yyv

2. Set
h = Rxyv − λ1u

k = Ryxu − λ2R
2
yyv

3. Compute α = − hT h+kT k
2hT Rxyk−λ1hT h−λ2kT R2

yyk
.

4. Update u and v so that

u′ = u + hα

v′ = v + kα

5. Repeat step 2-4 until convergence.

4. Conclusion

In this paper we proposed a number of computational tools

for solving optimization problems over spheres. These in-

clude, among many other problems, reduced rank Wiener

filters, reduced rank principal and minor component analy-

sis, and singular value decomposition. The main motivation

of this work is the desire to solve linear systems of equa-

tions arising from the necessary conditions of optimality of

these problems without inverting large scale matrices. We

should also emphasized that the derivation in Application 1

is applied to non-definite symmetric matrices. Additionally,

Algorithm 2 can be modified so that all singular vectors of

a given matrix can be computed. Simulations have been

conducted to examine the performance of each of the pro-

posed methods, however, we did not include them here due

to space limitation. Finally, the proposed approaches can

be extended to complex-valued functions with minor mod-

ifications.
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