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ABSTRACT

Traditionally, research on adaptive signal processing has been
conducted with the aim of designing adaptive filters with
high performance in terms of some prescribed performance
measure. However, little is known about how such filters
influence the nature of the processed signal. Based upon
some recently introduced results on dealing with nonlinear-
ity within a signal in hand, we provide a critical assessment
of the qualitative performance of common linear and non-
linear filters and their combinations. An insight into the
performance of so called hybrid filters is provided, which
is achieved for combinations of standard nonlinear (neural)
and linear filters. It is shown that depending on the appli-
cation, it is important not only to look for best filter perfor-
mance in terms of some quantitative measure of the error
but also for a filter that will not change the character of a
signal. Simulation results support the analysis.

1. INTRODUCTION

Much research has been conducted to devise an ”optimal”
filter according to a certain pre–defined criterion [1][2]. This
has been achieved not only for linear (Wiener filter) but
even more importantly for nonlinear filters [1][3]. The goal
is usually to optimize (maximize) some performance crite-
rion, a quantitative measure of the quality of performance.
These optimization problems become more complex when
we look for a sequential solution to a global optimization
problems. In the adaptive filtering literature, for instance,
the least mean square (LMS) and recursive least squares
(RLS) are such first and second order algorithms [1], which
are an approximate solution to a global ”batch” optimal fil-
tering problem. These solutions are sub–optimal, but com-
putationally simple and widely employed in practice.

In the area of nonlinear filters, neural nonlinear filters
are emerging in a variety of applications [3]. They are able
to cope with the complexity of the problem and represent an

alternative to linear adaptive filters for applications where
linear filters cannot cope with the nonlinearity of a signal.
Moreover, nonlinear filters might be a viable alternative for
solving linear problems [4]. Since prediction is at the core
of both nonlinear and linear adaptive signal processing and
machine learning, we shall restrict ourselves, without the
loss in generality, to only problems involving prediction.
Notice that an input to an adaptive filter can be either linear
or nonlinear1. A linear signal is the one which is generated
by a linear stochastic model, while a nonlinear signal is the
one which deviates from the linear one. Methods for quan-
tifying nonlinear properties of a signal have been recently
developed and include the so called the third-order autoco-
variance (C3) [7] and the asymmetry due to time reversal
(REV) [7] as well as correlation dimension [8].

In some applications, such as medical ones, the nonlinear/linear
nature of a signal conveys information about the health state
of a patient. For instance, the nature of the heart rate vari-
ability signal changes from stochastic (linear) to chaotic (non-
linear) depending on whether the patient is healthy or not
[9][10]. Therefore for such applications it is important not
only to employ an adaptive filter which provides high per-
formance but also the one which will not change the nature
of the signal.

In this paper, therefore, we provide an initial investigation
into the qualitative properties of linear and nonlinear neu-
ral adaptive filters and their combinations (hybrid filters)
with respect to preserving the nature of a signal in hand.
The analysis is supported by quantitative performance mea-
sures and illustrative examples highlighting the need to take
into account the nature of processed signals when choosing
adaptive filters and algorithms for online applications.

1It is important to differentiate between the linearity/nonlinearity prop-
erties of a system, which can be examined by superposition, from the
linear/nonlinear properties of a signal, a theory which has only recently
emerged in the physics literature [5] and its applications in signal process-
ing are still in their infancy [3][6].
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2. NONLINEARITY DETECTION METHOD

Several methods for detecting the linear/nonlinear nature of
a signal have been proposed, such as the ”Deterministic
Versus Stochastic” (DVS) plot [5], δ-ε Method [11], Cor-
relation Exponent [8]. Among them, the recently proposed
Delay Vector Variance (DVV) method is best suited for sig-
nal processing applications [3][12]. The algorithm is based
upon examination of predictability of a signal in the phase
space and is summarized below. For a given embedding di-
mension m:

• Generate delay vector (DV): x(k) = [xk−m, . . . , xk−1]T

and corresponding target xk,

• The mean, µd, and standard deviation, σd, are com-
puted over all pairwise Euclidean distances between
DVs, ‖x(i) − x(j)‖(i �= j),

• The sets Ωk(rd) are generated such that Ωk(rd) =
{x(i)|‖x(k)− x(i)‖ ≤ rd}, i.e., sets which consist of
all DVs that lie closer to x(k) than a certain distance
rd, taken from the interval [max{0,µd − ndσd};µd +
ndσd],e.g., Ntv uniformly spaced distances,where nd

is a parameter controlling the span over which to per-
form the DVV analysis,

• For every set Ωk(rd), the variance of the correspond-
ing targets, σ2

k(rd), is computed. The average over all
sets Ωk(rd), normalized by the variance of the time
series, σ2

x, yields the ’target variance’, σ∗2(rd):

σ∗2(rd) =
1
N

∑N
k=1 σ2

k(rd)
σ2

x

(1)

We only consider a variance measurement valid, if
the set Ωk(rd) contains at least N0 = 30 DVs, since
too few points for computing a sample variance yields
unreliable estimates of the true variance. A sample of
30 data points for estimating a mean or variance is a
general rule-of-thumb.

The presence of a strong deterministic component will lead
to small target variances for small spans. The minimal tar-
get variance, σ∗2

min = minrd
[σ∗2(rd)], is a measure for the

amount of noise which is present in the time series.

In the following step, the linear or nonlinear nature of the
time series is examined by performing the DVV test on both
the original and a number of surrogate time series, using the
optimal embedding dimension of the original time series.
Due to the standardization of the distance, these plots can
be conveniently combined in a scatter diagram, where the
horizontal axis corresponds to the DVV plot of the original
time series, and the vertical axis to that of the surrogate time
series. If the surrogate time series yield DVV plots similar

to that of the original time series, the ’DVV scatter diagram’
coincides with the bisector line, and the original time series
is judged to be linear. If not, then the original time series is
thought to be nonlinear.

3. HYBRID VERSUS STANDARD FILTERS

It is an open question whether the use of hybrid filters, for
instance a neural network followed by a linear FIR filter
trained by LMS or RLS can improve the overall perfor-
mance, as compared to the performance of single filters. In
particular, it has been recently suggested that a cascaded
combination of a recurrent neural network (RNN) and FIR
filter can separately predict the nonlinear and linear compo-
nent of a signal, respectively [1]. Although intuitively clear,
there has been little practical evidence whether this is the
case. Figure 1 shows a block diagram of a hybrid filter. To
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Fig. 1. A hybrid filter for prediction: A temporal neural
network followed by an FIR filter.

shed further light on the performance of such filters and to
highlight the need for a compromise between a quantitative
measure of performance and preservation of the nature of a
signal, we employ some recent results from the nonlinear-
ity detection in signals and apply them to adaptive filtering
problems.

The filters considered were both nonlinear and linear to-
gether with their combinations. The nonlinear neural filters
were the dynamical perceptron (nonlinear FIR filter) trained
by the nonlinear gradient descent algorithm (NGD) and a re-
current perceptron trained by the real time recursive learn-
ing (RTRL) algorithm. The linear filters considered were
standard FIR filters trained by LMS and RLS.

The data we considered were a benchmark linear signal,
given by [13]

xk = 0.8xk−1 + 0.15xk−2 + νk + 0.3νk−1

x0 = 1, x1 = 0.7 (2)

and a benchmark nonlinear signal, given by [14]

z(k) =
z(k − 1)

1 + z(k − 1)2
+ r3(k)

r(k) = 1.79r(k − 1) − 1.85r(k − 2) + 1.27r(k − 3)
− 0.41r(k − 4) + n(k) (3)
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where {n(k)} and {νk} are realizations of white Gaussian
noise N (0, 1). For these signals their DVV scatter diagrams
are shown in Figure 2. The linear signal has its DVV scat-
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Fig. 2. Nonlinear nature of the considered signals. Left:
linear signal. Right: nonlinear signal.

ter diagram on the bisector line, indicating its linear nature,
whereas the DVV scatter diagram for the nonlinear signal
(right diagram in Figure 2) deviates from the bisector line
indicating nonlinearity present in the signal.

4. SIMULATIONS

We calculated the quantitative performance criterion, the
prediction gain, given by Rp = 10 log s2

e2 , that is the log-
arithmic ratio between the signal variance and prediction
error variance for all the classes of filters considered. In ad-
dition we compared the DVV scatter diagrams to illustrate
how the nature of a signal changes with the use of different
classes of filters, which is the main purpose of this paper.
Simulations were performed with averaging of 100 realiza-
tions of independent trials.

Figure 3 illustrates the quantitative prediction gains Rp and
the qualitative DVV scatter diagrams, for the NGD and RTRL
algorithms used to train the nonlinear neural dynamical per-
ceptron, recurrent perceptron, and their combination (hy-
brid filter) with a linear FIR filter trained by LMS and RLS.
The experiment was conducted for prediction of the linear
benchmark signal (2). The DVV scatter diagrams show the
nonlinearity information about the output of such filters.
From the Figure, all of the filters and their combinations
were able to preserve the linear nature of the filtered sig-
nal. In other words, in terms of preserving the nature of
the signal (linear in this case), both the linear and nonlin-
ear filters and their combinations performed well on a linear
ARMA(2,2) signal, indicated by the fact that all the DVV
scatter diagrams in Figure 3 are on the bisector line of the
scatter diagram. In terms of the prediction gain, the NGD
and RTRL performed similarly, and the hybrid filters per-
formed better than single filters. The cascaded combination
of a dynamical perceptron and FIR filter trained by RTRL
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Fig. 3. Qualitative and quantitative comparison of the per-
formance between nonlinear neural and linear filters for a
linear benchmark signal (2).

and RLS gave the best performance.

Figure 4 illustrates a similar experiment performed on pre-
diction of the benchmark nonlinear signal (3). The DVV
scatter diagrams show the nonlinearity information about
the output of such filters. From Figure 4, both nonlinear
filters trained with NGD and RTRL performed poorly on
their own in terms of the prediction gain. However, looking
at the nature of the signal, from Figure 2, they preserved
the nature of the benchmark nonlinear signal. The recurrent
perceptron trained by the RTRL, showed worse quantitative
performance but better qualitative performance. The hybrid
filters, in the bottom row of Figure 4, performed better than
the considered nonlinear filters. A hybrid filter consisting of
a combination of a dynamical percpetron trained by NGD
and an FIR filter trained by LMS, showed a considerable
increase in prediction gain, however, the signal was con-
siderably linearized and the DVV scatter diagram showed a
significant change in the nature of the predicted signals. The
bottom right diagram in Figure 4 shows the performance of
a hybrid filter consisting of a recurrent perceptron trained
by RTRL followed by a FIR filter trained by RLS algorithm.
This case gave the best performance out of all combinations
of hybrid filters considered in terms of preserving the na-
ture of the signal in hand. The qualitative performance gain
for this combination was the second best of all the com-
binations, whereas the nature of the signal was reasonably
preserved.

It is natural to ask a question whether exchanging the order
of filters within a hybrid filter will affect the performance.
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Fig. 4. Qualitative and quantitative comparison of the per-
formance between nonlinear neural and linear filters for a
nonlinear benchmark signal (3).

Given the highly nonlinear nature of the problem it is ex-
pected that the performances will be significantly different.
To this purpose we re-run the experiments for the nonlinear
benchmark signal. The results of the experiments are shown
in Figure 5. Figure 5 confirms that exchanging the order of
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Fig. 5. Qualitative and quantitative comparison of the per-
formance between hybrid filters for a linear and nonlinear
benchmark signal. The filter order is interchanged from the
one in previous experiments.

the filters within a hybrid filter does not provide the same
performance as the original order of filters. In the experi-
ment, both the quantitative performance was considerably
worse and also the nature of the predicted signal changed
significantly towards the linear one.

5. CONCLUSIONS

We have illustrated the need to consider not only the quanti-
tative performance but also to preserve the nature of a signal

when applying real time adaptive filters. To this purpose,
we have used the Delay Vector Variance (DVV) method for
characterizing the nonlinearities present in the original sig-
nal and have compared the nonlinear characteristics of the
original signal with those of its predicted versions. This has
been achieved for both standard neural and linear filters and
hybrid filters consisting of a cascade of the two. It has been
illustrated that in some cases, a high prediction gain yields
linearized predictions, which may cause a problem in appli-
cations where the nature of a signal is of critical importance.
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