<

FILTERING IN HYBRID DYNAMIC BAYESIAN NETWORKS

Morten N. Andersen, Rasmus (). Andersen*

Technical University of Denmark
Informatics and Mathematical Modelling (IMM)
DK-2800 Lyngby, Denmark

ABSTRACT

We demonstrate experimentally that inference in a complex hybrid
Dynamic Bayesian Network (DBN) is possible using the 2-Time
Slice DBN (2T-DBN) from [Koller & Lerner, 2000] to model fault
detection in a watertank system. In [Koller & Lerner, 2000] a gene-
ric Particle Filter (PF) is used for inference. We extend the ex-
periment and perform approximate inference using The Extended
Kalman Filter (EKF) and the Unscented Kalman Filter (UKF).
Furthermore, we combine these techniques in a 'non-strict” Rao-
Blackwellisation framework and apply it to the watertank system.
We show that UKF and UKF in a PF framework outperform the
generic PF, EKF and EKF in a PF framework with respect to ac-
curacy and robustness in terms of estimation RMSE (root-mean-
square error). Especially we demonstrate the superiority of UKF
in a PF framework when our beliefs of how data was generated
are wrong. We also show that the choice of network structure is
very important for the performance of the generic PF and the EKF
algorithms, but not for the UKF algorithms. Furthermore, we in-
vestigate the influence of data noise in the watertank simulation.
Theory and implementation is based on the theory presented in
[v.d. Merwe et al., 2000].

1. INTRODUCTION

Currently, most of the problems presented in literature are limited
to static Bayesian networks or networks with discrete variables. In
[Koller & Lerner, 2000] a discrete traffic monitoring DBN is pre-
sented and a generic PF is used for inference. However, sampling
in high dimensional spaces can be very difficult.

In [Murphy & Russell, 2001] the authors analytically marginal-
ize out substructure(s) conditioned on the remaining (sampled)
nodes in a an experiment with a discrete concurrent localization
and map learning for a mobile robot. In the hybrid domain, this
technique has been applied to e.g. real-time monitoring of com-
plex industrial processes [Morales-Menendez et al., 2002] , but us-
ing only linear variable relations. In many real-life problems, we
need hybrid models that allow non-linear relations. Thus, we need
approximate inference techniques such as the EKF or the UKF. In
this paper, we assume a Markovian, stationary model and setup
a 2T-DBN in which nodes given at time ¢ is dependent only on
variables at time ¢ and ¢ — 1. This allows time varying relations
between variables (however the network structure is constant over
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time). We present a model with both discrete and continuous val-
ues and linear as well as non-linear relations. Hence, our imple-
mentation is not constrained in neither the data nor the relation
domain which allows for many real-life problems to be modelled.
It is thus important to compare the performance of different infer-
ence algorithms and their sensitiveness to the choice of network
structure. Furthermore, we need to know if the algorithms fail
when we do not know the true variable relations or when we have
a noisy environment.

2. FILTERING IN BAYESIAN NETWORKS

(Bold face symbols indicate a vector or a matrix and standard face
symbols are scalars). We convert a physical model into a Bayesian
network by ordering the system variables x1, ..., x, topologically.
Hence, we are able to compute the distribution of the ¢’th node
conditioned on its parents. In general, filtering is the problem of
estimating the state of a system (assignment of variables to spe-
cific values) using a set of on-line observations. We do this by
modelling the evolution of the system consisting of a state process
model p(x¢|x:—1) and a state measurement model p(y,|z:) and
the measurement noise. x; € R"* are the states (hidden vari-
ables) of the system at time ¢ and y, € R"v are the observations.
For example, non-linear, non-Gaussian models can be expressed
as & = f(xi—1,v¢-1) and y, = h(z¢,ne) with v, € R™
being the process noise and nn; € R the measurement noise.

The EKF is a minimum mean-square-error (MMSE) estimator
based on the Taylor series expansion of the non-linear functions f
and h around the estimates X;|;_; of the states x¢, e.g.

— — Of (x¢,v¢
F@e,ve) = f(@ge-1,Ba-1) + LG 0 s, )

_ F) . _
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The UKEF [Julier & Uhlmann, 1997] is a recursive MMSE es-
timator that does not approximate the non-linear process and mea-
surement models, but makes a Gaussian approximation of the dis-
tribution of the state random variable. When this variable is propa-
gated through the true non-linear system, it captures the true mean
and covariance to the second order for any non-linearity.

PF represents a generalization of Monte Carlo methods for

a dynamic process. The particles are weighted recursively us-
(¥ xe)P(Xe|x¢—1)

q(x¢[X0:t—1,¥1:¢)
per our goal is to perform filtering allowing proposal (approxima-

tion of the true posterior) distributions of the form g(xo:¢|y,.,) =

q(x0:t=1|¥1.4_1)9(¥:|X0:t—1,¥;.;). Assuming the states follow a

first order Markov process and that the obs. are conditionally inde-
. . t

pendent given the states yields p(xo::) = p(xo) [[;_, p(x;[x;-1),

ing importance weights wy = wi—1 In this pa-

p(¥1.|X0:t) = H§:1 p(y;]x;). In the generic PF, the transition
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prior q(X¢|Xo:t—1,¥1.;) = P(X¢|X¢—1) is used as proposal distri-
bution. In this work, the EKF computes the recursive approxima-
tion of the true posterior filtering density given by p(x¢|y;.,) =~
v (Xelyy,) = N <it,13t). Using the EKF in a PF framework,
a separate EKF is used to generate and propagate a Gaussian pro-
posal distribution for each particle g(x; )|x0 o1y Y1g) =
i =1,...,Nie. at time ¢t — 1 the mean and covariance of the im-
portance distribution for each particle are computed using the EKF
equations and the new observation. This filter is known as the
Extended Kalman Particle Filter [Doucet et al., 1998]. Using the
UKEF as proposal distribution generator leads to the Unscented Fil-
ter [v.d. Merwe et al., 2000]. These filters are abbreviated PFEKF
and PFUKEF resp. in this work.

3. WATERTANK SIMULATION

In this section we investigate the fault detection system presented
in [Koller & Lerner, 2000]. The system is shown in Figure 1 and
the corresponding 2T-DBN in Figure 2. For a more detailed pre-
sentation and more experiments using this network, please refer
to [Andersen & Andersen, 2003]. The process/measurement mod-
els and the measurements themselves are noisy. Furthermore, we
allow three possible types of failures that we would like to detect:

Measurement failure In the case of a measurement failure, the
measurement becomes extremely noisy.

Pipe bursts A pipe can suddenly burst and change its resistance
to some unknown value

Drifts The resistance of the pipe can drift, which gradually in-
creases or decreases the pipes resistance

In floww

R1o Tank 1 R

| F12
|

W
Fl1o 2 F2o

Fig. 2. DBN for the watertank system

The discrete RF nodes indicate faults in the resistance of the pipes
(drifts or bursts) and the M F' nodes indicate measurement fail-

N(Xt|y1:t)7

ures. The P, F' and R nodes are continuous and indicate pres-
sure, flow and pipe resistance resp. However, as the flow is the
ratio between the pressure and the resistance, we use the con-
ductance C' (reciprocal of the resistance) to avoid ratios. Finally,
the M nodes indicate pipe flow measurements (observable). All
other variables are hidden. The network has six pipe fault vari-
ables and three measurement failure variables, leading to 32,768
different discrete states. To simplify, the pipe connecting the two
tanks can not burst reducing the state space to 18,432 states. Un-
fortunately, this network is still far too complicated to be able
to use exact inference. Sub-optimally, we would like to sample
all discrete variables, which we can group into two vector-valued
nodes C F'; (conductance failures) and M F'; (measurement fail-
ures), and apply exact inference on the remaining nodes X:. A
technique known as Rao-Blackwellisation (RB). The observable
nodes are collected in Y, allowing a transformation of the fairly
complicated network into the simple network in Figure 3 using
CFt = A'CFt_l,Xt =B (CFt)'Xt_l andYt = D.Xt
Although the noise is Gaussian, the dynamics are non-linear, mak-

et o] [

Fig. 3. Simplified DBN for the watertank problem

ing it hard to integrate out X ;. Hence, we apply our approximate
inference techniques EKF and UKF and call it 'non-strict” RB. To
compare, we also apply a generic PF, PFKEF and PFUKEF to do
inference on the continuous valued nodes. All implementations
except PF were designed as a two-step serial process. The first
process samples the discrete nodes using a generic PF algorithm,
but without updating the continuous state variables. The contin-
uous states were then estimated (for each particle) in the second
process using EKF, UKF, PFEKF or PFUKF to avoid good esti-
mates of the cont. nodes based on poor estimates of the discrete
nodes.

In Figure 2 the flow nodes are the only hidden nodes directly
connected to the observation nodes. In EKF, the Kalman gain is
partly based on the Jacobian of the measurement model. Even
though pressure and conductance are highly correlated with the
flow, the Kalman gain thus only influences the flow estimates. Fig-
ure 4 shows the relative RMSE of the flow, conductance and pres-
sure estimates using EKF with correct initialization. It shows that
EKF is making poor conductance and pressure estimates whereas
the flow estimates are very accurate. In the generic PF we use

Relative mean RMSE using EKF

—— Conductance
0.07 — — Pressure
Flow

o 50 Time 100 150

Fig. 4. Relative RMSE for conductance (solid), pressure (dashed)
and flow (dotted) estimates using EKF with correct initialization.
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the transition prior as proposal distribution and all particles are
thus weighted according to their likelihood, i.e. based on the dif-
ference between the true and the predicted values of the observa-
tions. Hence, with only the flow nodes linked to the observations,
a particle with accurate flow values will have high likelihood re-
gardless of whether the particle has poor conductance or pressure
estimates. This problem is illustrated in Figure 5 which shows
three different weighings of 10 particles. The actual weights used
follow the weights based on the flow values and not the optimal
weights. A larger process noise would make this problem even
worse. In UKF, the Kalman gain is based on a number of sigma

Weights of 10 particles using the generic PF

[ actual weights used
0.8 [ ideal weights based on true states
Il weights based on flow

8 9 10

5 6 7
Particle number

Fig. 5. Actual weights used (light), optimal weights based on the
distance to the true states (dark) and weights based on the distance
to the true flows (black) for 10 particles using the generic PF.

points that are propagated through the network using the true pro-
cess and measurement models. Both pressure and conductance
are highly correlated with the observation nodes, even though they
are not directly connected. This property makes UKF able to up-
date all continuous state variables. One of the objectives in the
watertank problem is to track conductance failures making accu-
rate estimation of the conductance a crucial point. Hence, a new
network was proposed by eliminating the hidden flow nodes al-
lowing conductance and pressure nodes to be directly connected
to the observation nodes. When data is generated using the old
network, noise is added to the flows making the data more noisy
than data generated in the new network. To compare the two net-
works, the old network was used to generate the true data for both
networks. If the new network performs better on a data set gener-
ated by the old network, it is the obvious choice of network. Figure
6 shows the average RMSE for the conductance and pressure esti-
mates from the two networks using PF, EKF and UKF. The results
are based on 10 different data sets using 10 runs for each data set.
As illustrated, the new network outperforms the old network in all
node estimates using PF and EKF. In comparison, the performance
of UKF does not depend on the choice of network structure.

Next, we evaluate the sensitivity with respect to different lev-
els of data noise using only UKF and PFUKF based on their su-
perior performance in the previous experiments (for more exper-
iments and details, see [Andersen & Andersen, 2003]). Four dif-
ferent process and measurement noise levels were used, A/(0, o2),
02 = 0.01,0.1,0.2 and 0.4 and the true noise levels were used
as proposed noise levels (in the filtering algorithms). The RMSE
and the number of wrong failure estimates vs. the noise levels are
shown in Figure 7 using a time period of 100 time steps, 20 differ-
ent data sets and 10 runs for each data set. Outliers were removed.
Notice the nice correlation between the RMSE and the number
of wrong failure estimates for UKF (left plots) and PFUKF (right

RMSE for new and old network
EKF UKF

Generic PF
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Fig. 6. Average RMSE for conductance and pressure estimates
using the old network (light bars) and the new network (dark bars)
using the generic PF, EKF and UKF resp.
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Fig. 7. Surface plots showing the RMSE (top) and CF/MF estima-
tion errors (lower) using UKF (left) and PFUKEF (right).

plots). An accurate state estimate corresponds to a small RMSE
making it easier to track the failures and vice versa. Both the
RMSE and the number of wrong failure estimates using UKF and
PFUKF are more influenced by the level of measurement noise.
Noisy measurements seem more crucial as the algorithms are esti-
mating the noisy hidden states based on estimates of the measure-
ments. Furthermore, Figure 7 illustrates the relationship between
UKF and PFUKF. PFUKF is doing much better than UKF for large
measurement noise levels, but notice that the RMSE increases us-
ing the smallest process noise level (0.01) and is actually doing
worse than UKF: When UKF makes accurate estimates, PFUKF
can make matters worse by either fitting the measurement noise or
sampling from a Gaussian distribution that is too wide.

In real life one of the major challenges is to come up with
reasonable process and measurement models. In this section, we
change the proposed measurement model by simply adding 5% to
all the flow estimates. This might affect UKF negatively leaving
some space for improvement for PFUKF. PF was also included in
the experiments for the sake of comparison. 100 particles and 30
subparticles (30 samples for each UKF estimate in PFUKF) were
used for 60 time steps. Table 1 shows the mean and variance of the
estimation RMSE using 10 different data sets and 10 runs for each
data set. The second column shows the average number of incor-
rect failure estimates. As shown, PFUKEF is by far the most reli-
able filtering algorithm using a false measurement model. PFUKF
takes advantage of the UKF algorithm and the sampling making
it able to move the particles towards regions of higher likelihood.
This reduces the RMSE and makes tracking of the failure nodes
easier. In comparison, UKF has no sampling step to correct for the

V-775



false model. And the generic PF is using particles from regions of
low likelihood using the false measurement model.

Algorithm RMSE CF/MF errors
mean | var
Particle Filter - generic 256 | 204 56.3
Unscented Kalman Filter 208 43 30.1
Particle Filter - UKF proposal 178 76 234

Table 1. RMSE of state mean estimates (mean and var.) and aver-
age CF/MF estimation errors using a false measurement model.

In [Koller & Lerner, 2000], a generic PF is applied to the wa-
tertank problem using the network structure in Figure 2. They
propose as future work a combination of a generic PF (sampling
the discrete failure nodes) and a more sophisticated filter to sample
the continuous variables as in this work. It is impossible to make
direct comparisons between this work and the work of Koller and
Lerner due to likely modelling differences (such as pipe bursts or
measurement failures). However, we have shown that the generic
PF (and EKF) are highly sensitive to the choice network struc-
ture as opposed to the UKF based implementations which were
superior in terms of estimation RMSE. This was further indicated
using a false measurement model. Figure 8 shows the tracking of
C'10 (only every second error bar plotted for visual reasons) us-
ing UKF together with the events that occurred during a typical
simulation. Similar results were obtained for the other continu-
ous state variables - data not shown) using UKF. We draw process
and measurement noise samples from A/ (0, 0.5) and the pipe con-
ductance changes one unit for each time step it drifts to obtain a
low SNR ratio. We present a tracking plot for UKF instead of the
superior PFUKF to show that we can track the continuous vari-
ables and detect system faults very well using a very low number
of particles compared to the 50000 particles used in the generic PF
in [Koller & Lerner, 2000] without taking advantage of PFUKEF,
which is computationally more expensive than UKF.

Tracking of conductance C10

filter mean of C10

a7o} true value of C10 t = 80, pipe 1 bursts =

t = 56, measurement failure for F12

t = 52, pos. drift for C1o ends = ==,

Y
t = 66, measurement failure for F1o +

Conductance

= t= 30, pipe 3 bursts

< t=27, pos. drift for C1o begins

o 1 ‘0 26 3‘0 4‘0 5‘0 (;O 7‘0 86 9‘0 100
Time

Fig. 8. Estimation conductance variable C'10 using UKF (grey

line) and confidence intervals (plus, minus two standard deviations

from the mean estimate) and the true conductance C10 (black line)
based on ten runs with one data set using 300 particles.

4. CONCLUSION

In a 2T-DBN watertank simulation we have compared two network
structures and shown that PF and EKF were network structure sen-
sitive as opposed to UKF. Then we showed that UKF and PFUKF

were more sensitive to changes in the measurement noise level
than in the level of process noise. Large measurement noise levels
made the UKF estimates poor and PFUKF was able to move the
samples towards the true states. Finally, we used a measurement
model different from the true one. Again, PFUKF was capable
of making more accurate estimates than UKF which showed that
PFUKF is a more reliable algorithm, when we do not know the true
model relations. Furthermore, UKF and PFUKF were more accu-
rate than PF. Finally, we showed that we were able to track the
discrete failure nodes with a fairly low number of particles using
UKEF. These results are to some extent comparable with the work
of Koller and Lerner in [2000] in which the generic PF algorithm
was applied to the watertank problem using the network structure
in Figure 2. We have shown that a different network structure im-
proved the accuracy of PF and still the use of UKF significantly
improved the ability to track the failure nodes and estimate the
continuous state variables with a low number of samples.

All in all, we have compared several inference techniques and
shown that it is possible to do inference in a complex hybrid DBN.
We conclude that we should choose PFUKF, when the measure-
ments are noisy (i.e. when UKF is not able to make reliable esti-
mates), when we do not know the ’true’ process and measurement
models, when we work on higher order models (data not shown)
and have the necessary computational time. Otherwise, we would
settle for UKF or the generic PF. However, the generic PF has the
disadvantage that is sensitive to network structure.
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