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ABSTRACT

First order hidden Markov models have been used for a long

time in image processing, especially in image segmenta-

tion. In this paper, we propose a technique for the unsu-

pervised segmentation of images, based on high-order hid-

den Markov chains. We also show that it is possible to re-

lax the classical hypothesis regarding the state observation

probability density, which allows to take into account some

particular correlated noise. Model parameter estimation is

performed from an extension of the general Iterative Condi-

tional Estimation (ICE) method that takes into account the

order of the chain. A comparative study conducted on a

simulated image is carried out according to the order of the

chain. Experimental results on Synthetic Aperture Radar

(SAR) images show that the new approach can provide a

more homogeneous segmentation than the classical one, im-

plying higher complexity algorithm and computation time.

1. INTRODUCTION

The aim of this paper is to compare the high-order Hidden

Markov Chain model (denoted by HMC-R, with R the or-

der of the Markov chain or the memory length) with the

classical HMC-1 model for the unsupervised segmentation

of images.

The HMC-1 model has been used successfully in im-

age segmentation [1], thanks to the use of a Hilbert-Peano

scan that converts the 2D lattice into a 1D sequence [2].

The success of HMC models is due to the fact that when

the unobservable signal process X can be modelled by a

finite Markov chain and when the noise is not too com-

plex, then X can be recovered from the observed process

Y using different Bayesian classification techniques like

Maximum A Posteriori (MAP) or Maximal Posterior Mode

(MPM). Recently, it has been shown that the HMC-1 model

can compete with Hidden Markov Random Field (HMRF)

based methods in terms of classification accuracy, while be-

ing much faster, even though the latter provides a finer and

more intuitive modelling of spatial relationships [3].

High-order Markov chains, especially HMC-2, have been

used in a number of applications, including speech and hand-

written recognition [4, 5], genomic [6] and robotic [7].

However, to our knowledge, HMC-R model has not been

tested in unsupervised image segmentation. This model can

be of interest since increasing the memory of the Markov

process allows to model more complex spatial relationships

between pixels and so more complex noise structures.

The paper is organized as follows: high-order Markov

chain structure is presented in Section 2. We specify in Sec-

tion 3 the straightforward extension of the HMC-1, inspired

by [5] and applied for image segmentation. The unknown

HMC-R parameters estimation, achieved with an extension

of the general ICE method [1, 3], which can be seen as an al-

ternative to well-known Estimation-Maximization (EM) al-

gorithm, is then briefly presented. We also present in this

Section a new approach which consists in taking into ac-

count the order of the chain for the estimation of the condi-

tional observation probability density. Comparative results

on simulated and SAR images are presented in Section 4,

whereas conclusions are drawn in Section 5.

2. HIGH-ORDER MARKOV CHAINS

To simplify notations, X1→n will denote the sequence of

random variables {X1, . . . , Xn} and x will denote a real-

ization of process X .

X = {Xn}n∈{1,...,N} is a R-order Markov chain, with

length N , and with each Xn taking its value in the set of

classes Ω = {1, . . . ,K} if and only if:

P (Xn = xn | X1→n−1 = x1→n−1)
= P (Xn = xn | Xn−R→n−1 = xn−R→n−1) . (1)

Actually, it means that each component only depends on

the R immediately previous ones. Such a Markov chain is

said homogeneous if Eq. (1) does not depend on the position

n in the sequence. This leads to the set of state transition

probabilities of high-order of the form:

txn−R→n
= P (Xn = xn | Xn−R→n−1 = xn−R→n−1) ,
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∀ n ∈ {R + 1, ..., N}, with the state transition coefficients

having the properties:

txn−R→n
≥ 0,

K∑

xn=1

txn−R→n
= 1.

All these probabilities are contained in a (R+1)-dimensions

transition probabilities matrix T =
{
txn−R→n

}
.

It is important to note that R-order Markov chains are

also defined by R − 1 matrices characterizing the R first

transitions in the sequence:

• n = R : T R−1 =
{
tR−1
x1→R

}
,∀x1→R ∈ ΩR,

• . . . ,

• n = 3 : T 2 =
{
t2x1→3

}
,∀x1→3 ∈ Ω3,

• n = 2 : T 1 =
{
t1x1→2

}
,∀x1→2 ∈ Ω2.

Finally, for n = 1, we get the initial state probabilities

πx1 = P (X1 = x1) ,∀x1 ∈ Ω.

3. HIGH-ORDER HIDDEN MARKOV CHAINS

HMC-based image segmentation methods assume that each

component of the observation vector y = {y1, . . . , yN} can

be modelled as states of an underlying Markov chain X .

In this section, we investigate models in which the un-

derlying states sequence is an homogeneous R-order Markov

chain. Similarly to the HMC-1 context, we first consider the

usual two following assumptions:

•H1: the random variables Y1, . . . , YN are independent

conditionally on X .

• H2: the distribution of each Yn conditionally on X is

equal to its distribution conditionally on Xn.

Fig. 1 illustrates assumption H2 for a HMC-2 model.

The continuous lines of the process X represent the order

of the HMC: Xn+1 is attached to Xn and Xn−1. The con-

tinuous lines connecting Y with X symbolize H2: each Yn

is linked with the corresponding Xn. This assumption will

be relaxed in Section 3.3.

3.1. HMC-R model

As specified above, let X = X1→N be an homogeneous

R-order Markov chain, corresponding to the unknown class

image. We get:

P (X = x) = πx1

R−1∏

r=1

trx1→r+1

N∏

n=R+1

txn−R→n
.

Each state of the state space is associated with a distri-

bution, characterizing the repartition of observations:

fxn
(yn) = P (Yn = yn | Xn = xn) . (2)

X

Y

Xn Xn+1

Yn Yn+1

Fig. 1. Independence assumptions assumed in a HMC-2

model. The dotted lines represent the new relation intro-

duced by the more general assumption (HR
2 ), see text in

Section 3.3.

Given an observed sequence y = y1→N , we can com-

pute the joint state-observation probability density by:

P (X = x,Y = y) = πx1 fx1(y1)
R−1∏

r=1

trx1→r+1
fxr+1(yr+1)

N∏

n=R+1

txn−R→n
fxn

(yn). (3)

In the case of unsupervised classification, the distribu-

tion P (X = x,Y = y) is unknown and must be estimated

in order to apply a Bayesian classification criterion. There-

fore we have to estimate the following sets of parameters:

• The set Γ characterizing the homogeneous R-order

Markov chain, i.e. the initial probability vector π = (πx1)∀x1∈Ω,

the R − 1 intermediate transition matrices T 1, . . . , T R−1

and the R-order transition matrix T .

• The set ∆ characterizing the conditional observations

density presented in Eq. (2), i.e. the parameters of the K
distributions fk. In the Gaussian case, ∆ is composed of

the means and the variances.

3.2. Parameters estimation

The estimation of all the parameters in Θ = {Γ,∆} can

be achieved using the general ICE algorithm [1, 3].The ICE

procedure is based on the conditional expectation of some

estimators from the complete data (x,y). It is an itera-

tive method which produces a sequence of estimations θq

of parameter θ as follows: (1) initialize θ0, (2) compute

θq+1 = Eq[ θ̂(X,Y )
∣∣∣ Y = y], where θ̂(X,Y ) is an es-

timator of θ. In practice, we stop the algorithm at iteration

Q if θQ−1 ≈ θQ. This procedure leads to two different

situations:

• For parameters in ∆, θq+1 is not tractable. However,

it can be estimated by computing the empirical mean of sev-

eral estimates according to θq+1 = 1
L

∑L
l=1 θ̂(xl,y), where

xl is an a posteriori realization of X conditionally on Y . It

can be shown that X | Y is a non homogeneous Markov
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Fig. 2. Original image and noisy simulated one.

chain whose parameters can be computed with the high-

order normalized Baum-Welch algorithm.

• For parameters in Γ, the expectation can be computed

analytically, similarly to the HMC-1 case, by using the high-

order normalized Baum-Welch algorithm.

3.3. Relaxing hypothesis H2

It can be easily shown that assumption H2 is not strictly

necessary and can be relaxed to some extend:

• HR
2 : the distribution of each Yn conditionally on X

is equal to its distribution conditionally on (Xn, Xn−1, . . . ,

Xn−R+1) for X being a R-order Markov chain,

This assumption is less limitative and is sufficient in the

relations involved in the extended Baum-Welch algorithm.

Fig. 1 illustrates these two assumptions for a HMC-2

model. Continuous and dotted lines connecting Y with X
now symbolize HR

2 : each Yn is linked with the correspond-

ing Xn (continuous) and the previous one Xn−1 (dotted).

For a R-order Markov chain, the expression of the con-

ditional probability of the observation (Eq. (2)) becomes:

fxn−R+1→n
(yn)

= P (Yn = yn | Xn−R+1→n = xn−R+1→n) . (4)

This kind of model will be denoted HMC-R1(R2). For

example, HMC-R1(1) is the “classical” R1-order case, and

HMC-R1(R2) denote a segmentation with a HMC-R1 and

a state observation probabilities of order R2 (R2 ≤ R1).

4. EXPERIMENTAL RESULTS

Classical HMC-1 and HMC-R have been comparatively as-

sessed on two different images. Actually, in both cases, pa-

rameters initialization was done with a fuzzy C-means clas-

sifier. The ICE algorithm was stopped after fifty iterations,

assuming it has converged, and the image classification was

performed thanks to the Bayesian MPM criterion for the

simulated image and with the MAP criterion for the SAR

one.

Experimentally, we observed that the standard devia-

tions (std) associated with non-homogeneous classes (e.g.

classes “101”, “001”, . . . for a HMC-3(3)) were generally

under-estimated. So we decided to artificially increase these

HMC-1: 14.5% HMC-2(1): 14.6% HMC-3(1): 14.5%

HMC-2(2): 11.4% HMC-3(2): 11.2%

HMC-3(3): 8.1%

Fig. 3. Segmentation results obtained with ICE estimation

and MPM classification for different memory lengthes.

std, which allows to go through this question. However, this

issue needs a deeper study.

4.1. Noisy Simulated image

The first image is a simulated one (256 × 256), which rep-

resents a Gibbs field, in which the state densities are two

Gaussians of near means (µ1 = 120, µ2 = 125) and stan-

dard deviation (σ1 = 60, σ2 = 85). Furthermore, the

noises are correlated with the application of a smoothing fil-

ter. Original image of class and correlated noise image are

presented in Fig. 2. Results of segmentation are presented

in Fig. 3. The percentages give the error rates of misclassi-

fication according to the original image in Fig. 2.

The resulting class images confirm the interest of a HMC-

R, associated with high-order conditional observation prob-

abilities. Indeed, we can notice that a HMC-2(1) or a HMC-

3(1) segmentation, based on classical state-observation prob-

abilities densities (H2), are equivalent with a HMC-1; whereas

a HMC-2(2) and a HMC-3(3) segmentation, based on HR
2 ,

proved to be much more accurate in term of homogeneity.

These results confirm the well-known assumption that

it is possible to transform any HMC-R, based on H2, to a

mathematically equivalent first order version. Furthermore,

it confirms the interest of HMC-R in image segmentation,

which seems to enable a more accurate segmentation for this

kind of correlated noise.
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Fig. 4. ERS SAR observation of an oil slick in the Mediter-

ranean sea.

HMC-1 HMC-2(2) HMC-3(3)

Fig. 5. Segmentation results obtained with HMC and HMC-

R models.

4.2. SAR image

Fig. 4 is an excerpt of an ERS-SAR image (512 × 512), ac-

quired in October 3rd 1992, near the Egyptian coast, c©ESA.

Fig. 5 shows the class images resulting from the segmenta-

tion with the classical HMC-1, and with the new HMC-2

and HMC-3 models. The difficulty of this image is due to

the fact that oil on the water reduces air-sea interaction and

the main observable phenomenon is the dampening of the

capillary (surface) waves, which causes the major part of

the noise it contains [8]. The segmentation was naturally

perform with two classes: oil slick and free sea.

HMC-1 technique, which only takes into account the

previous pixel to determine the pixel state, is unable to de-

tect the noisy zone which constitute the damped waves. HMC-

R take more in account, and reveals very performing in

detecting noisy zone. In fact, the HMC-1 model, which

captures only closed interactions, has a limited ability to

describe noisy large scale behavior. Hence, the HMC-R
model, which incorporate more neighboring pixels, allows

one to take into account more complex noise structures.

5. CONCLUSION

In this work, we described a new technique based on HMC-

R models for unsupervised image segmentation. The exten-

sion of the HMC model to HMC-R one is almost straight-

forward. However, we developed an extended version of the

ICE procedure and also introduced a new high-order condi-

tional observation probability, which allows one to take into

account more complex and correlated noise. Due to the high

complexity of the HMC-R model, implying greater num-

ber of parameters and computation time, it was important to

verify the interest of the method. Experiments on simulated

data and SAR images confirm this. HMC-R model, which is

more general - and more complex - than the HMC-1 one, re-

veals very performing in image segmentation, especially in

modelling more complex spatial relationship between pixels

and so more complex noise structures.

We now plan to study the likeness between HMC-2 and

the recent Pairwise Markov Chains (PMC) [9] model. A

preliminary study shows that HMC-2 and PMC could pro-

duce, in particular situation, similar results. However, HMC-

R seems to be globally more efficient in terms of quality.
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