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ABSTRACT

An algorithm that discovers a compact data representation for sup-
port vector classification is presented. The algorithm finds a ba-
sis which reduces the volume occupied by the coefficients in sub-
space. This volume reduction is driven by the support vectors of
a support vector machine. A compact support vector representa-
tion (CSVR) of this form is shown to exhibit good generalization
in the form of large margin and a small number of support vectors,
while achieving low classification error rates. The compact nature
of the data representation is shown to be particularly effective in
representing correlated image sets such as those found in databases
where faces and objects are imaged under varying lighting or pose.

1. INTRODUCTION

The classification of images from databases has attracted partic-
ular interest from pattern recognition researchers. The difficulty
of determining salient features from images provides a challenge
for feature extraction. Additionally, classification presents unique
challenges for image features when little can be guaranteed about
the underlying statistical distribution of the data.

Due to the large amounts of data available in raw image sets,
subspace methods have become attractive for extracting features
from such data. Principal component analysis (PCA) [1], indepen-
dent component analysis (ICA) [2] or kernel principal component
analysis (KPCA) [3] provide the advantage of re-representing the
large amount of data present in images by a much smaller, statisti-
cally derived set of coefficients.

Support vector machines have emerged as a preeminent method
for classification. Recently, some examination has been given to
the selection of features which are particularly amenable to sup-
port vector classification. This follows the adage that improved
generalization of the classification occurs if the distribution of the
data is aligned with the non-linear function of the separating hy-
perplane. For example, in the particular case of the support vector
data description [4],[5], a spherical data representation of minimal
volume is desirable.

Herein, a representation of image data is found which, due to
its compact size and simple shape, achieves large margins and a
small number of support vectors, thus providing good generaliza-
tion in classification. The compact support vector representation
(CSVR) algorithm developed iteratively produces a set of basis
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vectors which provide subspace coefficients that re-represent the
image set in this compact form. Information from the support vec-
tors drives the modification of the basis. The algorithm is shown
to often converge to the maximum achievable margin, with a very
small number of support vectors. A brief background for support
vector classification is provided, followed by a detailed description
of the proposed algorithm. Statistical results of its operation are
provided on the COIL object database [6] and Yale Face Database
B [7], for two class classification problems, along with a brief dis-
cussion on convergence.

1.1. Support Vector Classification

To perform classification with a linear SVM, a labeled set of fea-
tures

� � � � � � �
is constructed for all � features in the training dataset.

The class of feature  �
is defined by

� � � � � � � � �
.If the training

data follows: � � � � � � � � � � � " # $ &
(1)

then the points for which the above equality holds lie on the hy-
perplanes

� � � � � � �
and

� � � � � � � �
. The SVM attempts

to find the pair of hyperplanes which gives the maximum margin
by minimizing ) � ) + subject to constraints on

�
. Reformulating

the problem using the Lagrangian, the expression to optimize for
a non-linear SVM can be written as [9]:, � - � � /0 � 2 3 - � � �4 /0 � 2 3 /0 5 2 3 - � - 5 � � � 5 6 � � � � � 5 �

(2)6 � � � � 8 �
is a kernel function satisfying Mercer’s conditions. An

example kernel function (the one used herein) is the Gaussian ra-
dial basis function:6 � � � � 8 � �

exp : � ) � � � 8 ) +4 > + ? (3)

where
>

is the standard deviation of the kernel’s exponential func-
tion. An estimation of classification error for the leave-one-out
method of training can be made by [9]:@ B C � D E E F E � I � K LM (4)

where K L is the number of support vectors,
M

is the number of
training data items, and

C � �
is the probability. Thus, if we reduce

the number of support vectors, we achieve better generalization,
since the reduced number of support vectors can still reproduce
the same hyperplane. Error bounds based on the number of support
vectors and the margin are described in [10].
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1.2. Geometric Margin

For any given dataset, the geometric margin � is the functional
margin of the classifier with

�
normalized. Thus,

� � �
�

� � �� � � � � �
� � 
 � � �� � � � � �

� � 
 
 � �� � � � � � (5)

By reducing the volume of the dataset in such a way that the
shape of the data becomes more regular, we can then increase the
geometric margin and reduce the number of the support vectors.
The maximum achievable geometric margin (separation on both
sides of the hyperplane) is then �� � as

�
is normalized. This oc-

curs with the hyperplane tilted at 45 degrees to the origin.

1.3. Feature Scaling By Coefficient Modification

In [4] the support vector data description was developed as a min-
imum volume containing all objects of the dataset. This minimum
volume representation, which improves generalization, can be ex-
ploited provided that the data is rescaled, as in [5]. Another option
for minimizing the volume of the feature space is to use the sup-
port vectors as an indication of the outer bounds of the feature
space and to move the data toward the class mean (by an amount
proportional to the support vector coefficients) to shrink the vol-
ume in this direction. A subspace that achieves this smaller vol-
ume can thus be learned from the modified coefficients. A basis
can be found by linear regression. In this paper, the regression was
performed by canonical correlation.

Using the class means:� �
� �

� � � � � �	

 � � � � � � � �  (6)

where � � � subspace learned at each step of the iterative algo-
rithm, a matrix of the class means,� � � " $ &  � ( �

�� * * * �
� � ��

�
�

� * * * �
� � �
� .

(7)

a matrix scalar of the support vector coefficients
� 


and an initial/ 1 3 matrix � 5 ,,

6 � 899: � � � �
. . . �

� < = => ? A �
8999999:

B
C

< ======> (8)

where / is the length of the basis vectors and 3 is the dimen-
sionality of the subspace, boundary feature vectors can be moved
toward their class means and basis vectors ? can be learned to fit
the new features.

2. CSVR ALGORITHM

1: initialize ? as ? A .
2: initialize: � � � D F & �  G ? H � J L N 


�
� � � D $ O D G ? H � J P R J

3: initialize
6

to the identity matrix.
4: repeat
5: move the support vectors toward the mean by an amount

proportional to the support vector
�

by:� � � D F & �  G � � � D F & �  � 6 � � � � D F & �  � � � � " $ &  �
6: recalculate ? by:? G � � H � � � � � � H � � � � D F & �  V � V �

where
�

denotes pseudo-inverse and U are the left singular
vectors of the generalized SVD of � and � � � D F & �  (canon-
ical correlation regression)

7: calculate: � � � D $ O D G ? H � J P R J� � � D F & �  G ? H � J L N 

�

8: define data pairs
� � � � D F & �  � � � 
 �

and apply a support vector
classifier to classify � � � D $ O D .

9: until (margin change X Z � � � �
) or (margin [ � Z \ ^ ).

2.1. Description of CSVR Algorithm

The steps of the CSVR algorithm are summarized in the steps
above. To initialize, the basis vectors ? are found from the train-
ing data � J L N 


�
using principal or independent components, the

low-dimensional data representations are found ( � � � D F & �  and� � � D $ O D ) and
6

is set to the identity matrix (lines 1, 2, and 3).
The first step in the iteration (line 5) moves all training data

toward its class mean by an amount proportional to its support
vector coefficient

�
. Support vectors will be set to the class mean

for
� � �

and the majority of the rest of the training data will
be unmodified. The basis vectors ? are then calculated to fit the
modified training data set through canonical correlation regression,
as shown in line 6. In line 7, the new test � � � D $ O D and train-
ing � � � D F & �  data sets are derived from their projections into the
modified basis vectors. In the final step in the iteration (line 8), the
newly calculated test and training subspace coefficients are classi-
fied by a SVC, which provides a new

6
for the next iteration.

After each iteration, the classes become more compact, with
less effect from outlying points (which have been previously moved
toward the mean) and the basis is learned from the regression on
the coefficients. The compactness of the classes is illustrated by a
steady increase in margin and the simplified shape of the classes is
exemplified by a steady decrease in the number of support vectors.
At the point where no further improvement in margin occurs, few
data points are moved, since the number of support vectors has
reached a small value. This condition terminates the iteration (line
9). The margin change termination threshold (0.001) was chosen
empirically. In a large number of cases, the maximum achievable
margin ( �� �

� � Z _ �
) is reached. In this case, the algorithm is ter-

minated slightly early (1.35), which provides a significant decrease
in iteration time.

3. TWO CLASS RECOGNITION WITH CSVR

3.1. Object Database - Pose Variance

The CSVR algorithm was tested on general objects from the COIL
database. 30 objects under poses ranging from 0 to 355 degrees
were classified with a soft margin support vector classifier with a
large value of C=100. This yielded 435 two class classification
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(a) COIL (b) YALE

Fig. 1. Basis images (Brightness and contrast have been enhanced)

examples. The training data consisted of objects at poses taken
every 10 degrees starting from 0 degrees. The test data used ob-
jects at poses taken every 10 degrees starting from 5 degrees. The
dimensionality of the learned subspace was 25. Recognition per-
formance (margin, number of support vectors and error rate) is
tested for the raw data for each subject pair for kernel

�
ranging

from 1 to 50.

3.2. Face Database - Pose and Lighting Variance

To demonstrate the CSVR algorithm for face images, Yale Face
Database B is employed. The database contains 10 subjects im-
aged under 9 different poses and 64 lighting positions. For this ex-
periment, multiple 2 class recognition experiments are performed
with the SVM (C = 100) over 36 pairs of subjects. For each pair of
subjects, a training data set is constructed from the first 32 light-
ing positions for the poses 1 and 2 of each subject. The test data
set comprised the same pair of subjects imaged under the last 32
lighting positions from the poses 7 and 8. As such, the recogni-
tion will therefore require some degree of both lighting and pose
invariance. The training and test images were histogram equalized
and mean centered before subspace calculation and classification.

The resulting basis images for the training images are shown
in Figure 1 for both the COIL and Yale experiments. The recogni-
tion results for the kernel sigma which yielded the largest margin
of the raw data and the results after the termination of the CSVR
algorithm for both databases are shown in Figure 2.

3.3. Convergence

To illustrate the convergence of the algorithm, the volumes of the
classes, margin, and number of support vectors were plotted as an
average across all test cases. Convergence, of course, occurred at
a different number of iterations for each test. Thus, to find an av-
erage, the last value converged to was extended to the largest num-
ber of iterations taken (401 iterations for the COIL database and
72 iterations for the Yale database). Volume for each class was es-
timated by sum of the the absolute distances of each subspace data
point to its class center. The average convergence characteristics
for the COIL and YALE test is shown in Figure 3. The maximum
achievable geometric margin, �

�
(see Equation 5) is shown as a

dashed line on the mean margin plots.
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(b) COIL number of support vectors
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(c) COIL recognition rate
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(d) YALE margin
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(e) YALE number of support vectors
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(f) YALE recognition rate

Fig. 2. Box plots of results of classification of all pairs of classes

4. DISCUSSION

4.1. Choice Of SVM Parameter C

C was chosen as 100 empirically, however there was almost no
change in the results (error rate, margin, or number of support vec-
tors) over a very wide range of values, from C = 0.1 to C = 100
for both datasets. The largest value of C was chosen under the
assumption that a heavy penalty for errors creates more complex
decision boundaries making it easier to illustrate the reduction of
complex decision boundaries into simpler ones. In any case, the
same value of C was used for the raw data SVM and the CSVR
SVM.

4.2. Raw Data and CSVR Results

For both databases, the average recognition rate was almost identi-
cal between the raw data and CSVR classification. However, sub-
stantial increases in margin and decreases in the number of support
vectors resulted from the use of CSVR. This is a direct indication
that the CSVR’s ability to generalize effectively for data with char-
acteristics typical of image databases. The basis images indicate
a highly redundant coding, with a lot of the basis images exhibit-
ing similarity. This is in sharp contrast to PCA, which provides
a set of decorrelated bases. While this type of coding would be
highly inefficient for image coding applications, redundant coding
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(a) COIL volume of class 1
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(b) COIL volume of class 2
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(c) COIL margin
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(d) COIL number of support vectors
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(e) YALE volume of class 1
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(f) YALE volume of class 2
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(g) YALE margin
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(h) YALE number of support vectors

Fig. 3. Averages per iteration

is gaining ground for applications in image recognition.

4.3. Volume, Margin and Number of Support Vector Conver-
gence

The averages of volume, margin and number of support vectors
over multiple iterations show a strong relationship between these
quantities. For the case of image databases, it appears that reduc-
tion in class volume in the direction of the class means provides an
effective and well behaved way to regularize the class shapes. Av-
erage convergence occurred quite rapidly (exponentially) for both
databases, after about 100 iterations. However, for a number of
recognition tasks, where the class distributions may be highly ir-
regular, or strongly multi-modal, it is possible that such regular

shapes may not occur after iteration. It appears that the nature of
correlated image sets is particularly amenable to the CSVR repre-
sentation.

5. CONCLUSION

In this paper, a new iterative algorithm was developed with the in-
tent of compacting the classes in a support vector representation.
A set of basis vectors was learned from the modified support vec-
tors to re-represent the data in a more compact form. This new
representation, CSVR, was shown to exhibit better generalization
characteristics than the raw data for two standard image databases.
The algorithm was well behaved image datasets under a variety
of pose and lighting conditions, with exponential convergence of
margin and the number of support vectors.
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