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ABSTRACT 

A method to detect airports in large aerial optical imagery 

is considered. Combining texture segmentation and shape 

detection, this method shows advantages in analyzing large 

aerial imagery. First, large aerial images are segmented 

and interpreted according to textural features using a fast 

kernel matching pursuits (KMP) algorithm. As a result, 

attention is then paid on small regions of interest, 

extracted from the large images. Second, for each region 

of interest, a corresponding binary image is generated via 

the Canny edge operator, yielding a modified Hough 

transform image with which we search for elongated 

rectangles with desired dimensions (characteristic of 

runways). Those detected rectangles are declared as 

runways and the corresponding region of interest as an 

airport. Application in a dozen aerial images from 

southern California demonstrates the effectiveness of the 

algorithm.  

1. INTRODUCTION 

Target detection and recognition has been a research topic 

in computer vision for many years. An airport, as a key 

transportation target, has also attracted much attention. 

Previous research [1][2] has investigated recognition of 

airports from aerial imagery, based primarily on small 

localized areas or small imagery size (256×200). The aim 

of this paper is to search for airports within cluttered 

backgrounds in large optical imagery (approximately 

6500×7500 pixels).  

As we demonstrate below, airports located in dense 

urban and suburban areas are often difficult to distinguish 

from the background, composed of roads and buildings. 

Furthermore, to deal with large aerial imagery of size 

around 6500×7500 pixels, algorithm design is a significant 

challenge to meet requirements of computation time and 

memory.  

Fortunately, an airport scene is typically 

characterized by runways of particular length and width. 

Such properties distinguish airports from their surrounding 

environment, and such will play a key role in the algorithm 

presented here. In a large image it is often difficult to 

exhaustively search for such airport features. We therefore 

develop a texture-based pre-screening step that first 

locates potential regions of interest (ROIs), with these 

localized regions examined subsequently for the detailed 

characteristics of an airport. 

In this paper, a new airport detection method 

combining texture segmentation and shape analysis is 

presented. Large aerial images are first segmented and 

classified into different textures, with a sparse kernel 

classifier based on the kernel matching pursuits (KMP) 

algorithm [3]. According to the texture segmentation 

results, ROIs are extracted for further shape analysis. To 

verify the existence of an airport, elongated rectangles are 

searched in each ROI using a modified Hough transform. 

The method is demonstrated using a dozen airborne 

optical images from southern California. The algorithm as 

well as example results are described in the following 

sections.  

2. TEXTURE SEGMENTATION  

Optical aerial imagery may often be interpreted in terms of 

texturural features. The first stage of our airport detector is 

based on textural features, with which we seek to delineate 

those ROIs that are likely to be characteristic of an airport. 

2.1. Texture features 

Here images are cut into small-sized chips. Each chip is 

considered as a type of texture depending on its features. 

For each chip, a total of six features are extracted to form 

a feature vector. Gray-scale images are considered, and the 

textural features used are (a) the mean pixel value within 

the chip, (b) the standard deviation, (c) the mean of the 

two-dimensional gradient, (d) the standard deviation of the 

gradient, (e) the Zernike moment [4] and (f) the circular-

Mellin coefficient [5].  

Specifically, for a chip ),( yxI  in a Cartesian 

coordinate system or ),( θρI  in a polar coordinate system 

with size NM × , its features can be computed as follows.  
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Zernike moment [4]:  
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where Zernike polynomials  
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We use 1== nm , and then )exp(),( θρθρ jV = .

Circular-Mellin coefficient [5]: 
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where ( ) )exp()2exp()exp(, θρπρθρ jqpjh ⋅−= ,

with 1== qp , and therefore 

( ) )]2(exp[)exp(, θπρρθρ +−= jh .

Thus corresponding to each texture chip, there is 

a feature vector [ ]6,5,4,3,2,1 FFFFFF=F , which can 

be classified using a learning-machine classifier.  

2.2. KMP Classifier 

In order to classify the feature vectors of different texture 

chips, a kernel machine classifier is commonly used. 

However, due to the large amount of training and testing 

data, classifiers such as the support vector machine (SVM) 

and the relevance vector machine (RVM) will require 

much time and computer memory, and may be impractical. 

Here a sparse kernel classifier using the kernel matching 

pursuits (KMP) algorithm is applied to overcome these 

difficulties [3].  

Suppose the training samples are K
iii y 1},{ =x  where 

ix  is an observed datum (feature vector) and 

},...,2,1{ Lyi ∈  is its target (texture) label, with the 

functional relationship ),( wxfy = . The aim of kernel 

machine classifier design is to learn the optimal 

parameters w that minimize the expected risk.  

Suppose the nth order kernel machine function is:  

)(),()( 0,

1

, xwxcx n
T
nn

n

i

iinn wkwf φφφφ=+=∑
=

              (7) 

where T
nn kkk )],(),...,,(),,(,1[)( 21 ⋅⋅⋅=⋅ cccφφφφ , ),( ⋅⋅k  is a 

kernel function, nW  are the weights that combine the basis 

functions, and the subscript n  denotes the number of basis 

functions being used.  

Then the weighted sum of squared errors between 

the expected output and the KMP output is 
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where iβ  is a constant responsible for quantifying the 

importance of the ith training sample ),( ii yx . The value 

of w  that minimizes (8) is found to be: 
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Then (n+ )th order KMP is inductively written as:  
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where ),((.) 11 ⋅= ++ nn k cφ , and the (n+ )th order 

parameters 1+nW  are 
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From (11), the parameter w  can be optimized with an 

iterative computation. When 01.0)( 11 <− −− nnn eee  the 

KMP results are terminated and the parameters w  are 

obtained to design the KMP classifier (other stopping 

criteria may be considered).  

In the KMP algorithm, after selecting a given 

training example as a basis, the form of the kernel is 

optimized with a simple gradient search in the parameters 

of the kernel (e.g. the variance of a radial basis function 

kernel). In this manner the kernel is “tuned” to the 

respective training vector chosen as a basis. We have 

found that, compared with SVM and RVM, this algorithm 

achieves good generalization at low computational costs.  

Considering the typical textures in aerial imagery, a 

seven-ary KMP classifier is designed (discussed further 

when presenting results). With the KMP classifier, chips in 

large aerial imagery will be labeled as different textures. 

As a result, those chips not likely to be parts of an airport 
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area (i.e. with the wrong textural properties) are eliminated 

and ROIs are extracted for further shape analysis.  

3. SHAPE DETECTION 

After segmentation, attention is then focused on the 

limited ROIs deemed to be characteristic of airports. 

Textural segmentation is not adequate by itself to delineate 

airports, and therefore the ROIs are subjected to further 

processing. Specifically, it is necessary to carry out shape 

detection in the ROIs. We have found that detection of 

runway edges, in the form of an elongated rectangle, is an 

effective method to verify whether a given ROI is 

representative of an airport.  

3.1. Modified Hough transform  

The Hough transform is one of the most popular methods 

to extract straight lines from digital images. A large 

number of papers dealing with Hough transform 

applications may be found, such as [6]. Using the Hough 

transform, the straight line tkxy +=  can be expressed in 

polar coordinates as:  

θθρ sincos ⋅+⋅= yx                                                  (12) 

From (12), if a set of edge points ),( ii yx that lie on 

a straight line having parameters ),( 00 θρ , then each edge 

point plots to a curve in ),( θρ  space and all these curves 

must intersect at the point ),( 00 θρ . Hence a local 

maximum in a ),( θρ  space histogram represents a straight 

line. This approach achieves good results in most cases. 

However, in large aerial imagery, extra straight lines are 

often detected due to the large number of edge points 

(roads, buildings, etc.).   

To reduce the influence of noise points, the 

increment of a point ),( ji yx  at the ),( 00 θρ  histogram 

bin is changed from a constant to an absolute inner 

product 0θrrij

�� ⋅ , in which ijr
�

 represents the unit vector 

with the direction of the local line at point ),( ji yx  and 

0θr
�

 stands for unit vector with the orientation of the line 

000 sincos θθρ ⋅+⋅= yx .

3.2. Elongated rectangle detection  

Compared with highways or roads, airport runways show 

straight and smooth characteristics, with specific 

dimensions of about 1000~2000 meters long and 25~85 

meters wide and thus form an elongated rectangle shape in 

aerial imagery. Such elongated rectangles are 

characteristic of runways.  

Before performing the Hough transform, a binary 

image is first created by edge detection for each ROI. 

Since the gray level variation may be small in some aerial 

images, the Canny edge operator [7], which can find both 

strong and weak edges using two thresholds on image 

gradient, is used such that runway edges can be detected 

even at relative lower gray contrast.  

Using the aforementioned modified Hough 

transform, a histogram of the binary image is computed. 

Based on this transform histogram, elongated rectangles 

are searched in the ROI. First, pairs of long straight 

parallel lines are detected as the long edges of runways. In 

the histogram image, each pair of parallel lines 

corresponds to two local maxima at the same θ , while 

with a distance )( 21 ρρ − . If the distance is between 25 

and 85 meters, then short parallel lines between the two 

parallel lines with almost orthogonal direction ( �10±  is 

allowed in practice) and distance between 1000 and 2000 

meters will be detected as the short edges. Then the two 

pairs of parallel lines form an elongated rectangle 

representing the location of a runway. If there is not such 

an elongated rectangle found in a ROI, then the ROI is 

declared as clutter (not an airport).  

4. EXAMPLE RESULTS 

Using the algorithm mentioned above, experiments have 

been carried out on a dozen aerial images from southern 

California. Seven textures are considered: water, 

mountains, buildings, urban areas, foliage, fields and 

runways (airport). Examples of each of these seven 

textures are taken from distinct imagery, for KMP training. 

Example results are shown in the following figures, 

wherein (automatic) classification results are presented. 

Fig. 1 shows an aerial image, which includes an airport. 

The image size is 6570×7620 pixels, with one-meter 

ground resolution. The texture segmentation result of this 

image is shown in Fig. 2. Two airport-like ROIs are 

extracted. Further shape analysis shows that one ROI 

includes an airport while the second does not (Fig. 3). The 

final algorithm results for two other images are 

demonstrated in Figs. 4 and 5.  

5. CONCLUSIONS 

An automatic airport-detection algorithm is proposed for 

large aerial optical imagery. This method carries out both 

texture segmentation and shape analysis. It overcomes 

difficulties in computation time and memory, and obtains 

good results in finding ROIs and airport runways from 

large complex imagery. This technique has been carefully 

tested and validated using a dozen images from southern 

California.  
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Fig. 1. Aerial image of Los Alamitos, California
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Fig. 2. Texture segmentation result using seven-ary KMP 

classifier with two ROIs (white) 
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Fig. 3. Airport detection result, large rectangle denotes 

airport area, two elongated rectangles represent runways 
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Fig. 4. Airport detection result of aerial image 

of Camarillo, California 
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Fig. 5. Airport detection result of aerial image 

of Whiteman, California  
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