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ABSTRACT 

The POLSAR images are modeled by a mixture model that 

results from the product of two independent models, one 

characterizes the target response and the other characterizes the 

speckle phenomenon. For the scene interpretation, it is desirable 

to separate between the target response and the speckle. For this 

purpose, a PCA-ICA neural network model is proposed. Based 

on its rigorous statistical formulation, a neuronal approach for 

the simultaneous diagonalisation of the signal and noise 

covariance matrices using PCA transform is proposed. The PC 

images are uncorrelated and having an improved SNR. However, 

the speckle is a non-Gaussian multiplicative noise, the higher 

order statistics contain an additional information about it. ICA 

method is used to separate the speckle from the PC images and 

providing new IC images that have an improved contrast. The 

method has been applied on real POLSAR images. The extracted 

features are quite effective for the scene interpretation. 

1. INTRODUCTION 

Recent advances in the remote sensing POLarimetric Synthetic 

Aperture Radar (POLSAR) systems provide a rich set of data for 

the same scene. This set of data brings knowledge on the nature 

of targets [1]. The amount of information is scattered in many 

images that are correlated. Pack information, decorrelate the data 

and reduce the noise for an efficient scene interpretation are then 

necessary. However, the POLSAR images are corrupted by 

speckle that appears as a granular signal-dependent noise. It has 

the characteristics of a non-Gaussian multiplicative noise [2].  

Supposed that the speckle is a non-stationary noise, a 

generalized form of the PCA is suggested [3]. The method is the 

noise-adjusted principal components (NAPC) transform [4] 

adapted to the POLSAR data. According [1], the method appears 

to give degenerate results in the context of the multiplicative 

model. Applying PCA in the logarithmic domain of POLSAR 

images has been suggested in the literature. The speckle is then 

transformed to an additive noise and hence PCA can be applied. 

However [4], the loss of information is clearly proved via the 

reconstitution process of the original POLSAR images. Recently, 

blind source separation by ICA has received attention because of 

its potential applications in various domain. What distinguishes 

ICA from other methods is that it looks for components that are 

both statistically independent and non-Gaussian by using some 

form of higher-order statistics, which means information not 

contained in the covariance matrix. It reduces higher-order 

statistical dependencies, attempting to make the signals as 

independent as possible. ICA is suitable for neural network 

implementation and different theories recently proposed for that 

purpose lead to the same iterative learning algorithm. Lee et al. 

[5] review those theories and suggest that information theory can 

be used to unify several lines of research. Different neural-based 

blind source separation algorithms are reviewed in [7]-[11].  

POLSAR images contain a lot of information in the higher 

order statistics [2]. This paper demonstrates the usefulness of 

ICA for POLSAR data analysis. A PCA-ICA neural network 

model is proposed (Fig. 1). We show that the Independent 

Component (IC) images present a lower Contrast Ratio (CR) 

compared to the Principal Component (PC) images. This implies 

that the speckle is reduced. The IC images have a good Signal-

to-Noise Ratio (SNR) and are quite effective for scene 

interpretation. Before detailing the two parts of the model in 

sections 3 and 4, respectively, we give in section 2 the POLSAR 

images model and the statistics to be used later. We conclude the 

paper in the last section. 

2. MODEL AND STATISTICS 

Let xi be the content of the pixel in the ith SAR image, si the 

noise-free signal response of the target, and ni the speckle. Then, 

we have the following multiplicative model: 

iii nsx .=                                    (1) 

By supposing that the speckle has unity mean, standard deviation 

of σi, and is statistically independent from the observed signal xi

[2], the multiplicative model in (1) can be rewritten as: 

( )1nssx iiii −+= .                           (2) 

The term ( )1ns ii −.  represents the zero mean signal-dependent 

noise and characterizes the speckle noise variation. Thus, we 

have converted the multiplicative model into the additive model 

without using any transform operator such as the logarithm 

operator often suggested in the literature. In fact, applying a 

logarithm operator tends to depress the information, since the 

logarithm operation compresses the image dynamic range [4]. 

The statistics computed in the logarithm domain are different to 

those computed from the original data. Now, letx be the 

stationary random vector of input POLSAR images. Its 

covariance matrix xΣ can be written as: 
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nsx ΣΣΣ +=                                (3)

sΣ  and nΣ are the covariance matrices of the noise-free signal 

vector and the signal-dependent noise vector, respectively. These 

two matrices are used in the design process of the transformation 

matrix of the proposed neural network model. 

3. PC IMAGES EXTRACTION  

The PCA-based part (Fig. 2) is devoted to extract the PC images. 

It is based on the simultaneous diagonalisation concept of the 

two matrices xΣ and nΣ , via one orthogonal matrix A [4]. This 

means that the PC images (vectory ) are uncorrelated and have 

an additive noise that has a unit variance. This step of processing 

allows us making our application coherent with the theoretical 

development of ICA. In fact, the constraint to have whitening 

uncorrelated inputs is desirable in ICA algorithms because it 

simplifies the computations considerably [5]. These inputs are 

assumed non-Gaussian, centered, and have unit variance. It is 

ordinarily assumed thatx is zero-mean, which in turn means that 

y is also zero-mean, where the condition of unit variance can be 

achieved by standardizing .y  For the non-Gaussianity of y , it 

is clear that the speckle, which has non-Gaussianity properties, is 

not affected by this step of processing since only the second-

order statistics are used to compute A . The criterion “C” for 

determining A  is: “Finding A such as the matrix nΣ becomes 

an identity matrix and the matrix xΣ is transformed, at the same 
time, to a diagonal matrix”. This criterion can be formulated in 

the constrained optimization framework as: 

IAA nx =.... ΣΣ TT AA to subjectMaximize , where I is the 

identity matrix. Based on the well-developed aspects of the 

matrix theories and computations, the existence of A is proved 

in [4] and a statistical algorithm for obtaining it is proposed. 

Here, we propose a neuronal implementation of this algorithm 

[6] with some modifications (Fig. 2). It is composed of two PCA 

neural networks that have a same topology. The lateral weights 

1
jc , respectively 2

jc  forming the vector 1C , respectively 2C ,

connect all the first m-1 neurons with the mth one. These 

connections play a very important role in the model since they 

work toward the orthogonalization of the synaptic vector of the 

mth neuron with the vectors of the previous m-1 neurons. The 

solid lines denote the weights 1
j

1
i c,w , respectively 2

j
2
i c,w , which 

are trained at the mth stage, while the dashed lines correspond to 

the weights of the already trained neurons. Note that the lateral 

weights asymptotically converge to zero, so they do not appear 

between the already trained neurons.  

The first network of Fig. 2 is devoted to whitening the noise 

in (2), while the second one is for maximizing the variance given 

that the noise is being already whitened. Let 1x  be the input 

vector of the first network. The noise is whitened, through the 

feed-forward weights { }1
ijw , where i and j correspond to the 

input and output neurons, respectively, and the superscript 1
designates the weighted matrix of the first network. After 

convergence, the vectorx is transformed to the new vector 

x'via the matrix 1/2.�−= 1wu , where 1w  is the weighted 

matrix of the first network, �  is the diagonal matrix of 

eigenvalues of nΣ  (variances of the output neurons) and 1/2�−

is the inverse of its square root. Next,x'be the input vector of 

the second network. It is connected to M outputs, with 

NM ≤ , corresponding to the intermediate output vector 

noted 2x , through the feed-forward weights { }.w2
ij  Once this 

network is converged, the PC images to be extracted (vectory )

are obtained such as: xwuxy 2
TA ... ==  where 2w  is 

the weighted matrix of the second network. The activation of 

each neuron in the two parts of the network is a linear function 

of their inputs. The kth iteration of the learning algorithm, for 

both networks, is: 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )kc.kq.kq.kkc1kc

kw.kq.kq.kkw1kw
2
mm

2
mm

−+=+
−+=+

Q

P

β
β

  (4) 

P  and Q  are, respectively, the input and output vectors of the 

network. ( )kβ  is a positive sequence of learning parameter. 

The global convergence of the PCA-based part of the model is 

strongly dependent on the parameter β. The optimal choice of 

this parameter is well studied in [6].

4. IC IMAGES EXTRACTION 

Speckle is non-Gaussian, the higher order statistics of the data 

contain additional information about it that is not affected by the 

PCA-based part of the model. To facilitate the scene 

interpretation, the speckle presence should be reduced to the 

minimum as much as possible in the PC images, without 

additional prior knowledge of their statistical properties. This is 

the purpose of the ICA-based part  (Fig. 3). The M inputs of the 

network are the PC images. The M output neurons correspond to 

the IC images (vectorz ). We have then yz B.= , where B  is 

the separating (or de-mixing) matrix that we want to determine.  

ICA can be carried out by using many different methods. The 

JADE algorithm [7] is a cumulant-based method that uses joint 

diagonalization of a set of fourth-order cumulant matrices and 

exploits their algebraic properties to define a contrast function. 

Algebraic-based contrast functions typically require extensive 

batch computations using estimated higher-order statistics. One 

very straightforward neural learning method is based on the 

nonlinear PCA learning rule [8]. However, this algorithm is 

restricted to the separation of sub-Gaussian sources, because of 

stability requirements. FastICA algorithm is based on a fixed-

point iteration and uses a deflation scheme to calculate 

components sequentially [9]. It has contributed to the application 

of ICA to large-scale problems due to its computational 

efficiency. Infomax algorithm maximizes the joint entropy of the 

components that is an invertible monotonic no-linearity function 

of the outputs [5], [10]. It has a simple architecture and can deal 

with either sub-Gaussian or super-Gaussian components by 

adaptively switching between two non-linearities. The switching 

is possible by using the stability analysis given in [11]. In this 

paper, we have adapted this algorithm to learn the matrix .B
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Using the concept of differential entropy and the invertible 

transformation of yz B.= , the mutual information between 

the outputs is: ( ) ( ) ( ) ( )Byz detlogHzHI
M

1i
i +−= ∑ =

,

where ( )izH  are the marginal entropies of the outputs and 

( )zH  is the joint entropy of z . By constraining iz to be 

uncorrelated and of unit variance, this implies that: 

( ) 1Edet T =z.z . As the negentropy is a measure of non-

Gaussianity, that is: ( ) ( ) ( )zzz HHJ Gaussian −= . So the 

mutual information and negentropy differ only by a constant that 

does not depend on B  and the sign, that is: ( ) ∑ =
−=

1i
zI Cz ,

which means that finding an invertible transformation B  that 

minimizes the mutual information is approximately equivalent to 

finding directions in which the sum of non-Gaussianities of iz
is maximized. Maximizing the joint entropy ( )zH  can 

approximately minimize the mutual information among the 

output components ( )iii vgz = , where ( )ii vg  is an invertible 

monotonic non-linearity and ..yv B=  If the mutual 

information among the outputs is zero, the mutual information 

before the non-linearity must be zero as well since the nonlinear 

transfer function does not introduce any dependencies. The 

relation between iz , iv , and ( )ii vg  is such as: 

( ) ( ) ( ) iiiii vvgvpzp ∂∂= . By this relationship, ( )vg  must be 

chosen so that its derivative approximately forms a probability 

distribution function for the sources to be recovered. The only 

remaining parameters to adapt are the synaptic weights that can 

be found by maximizing ( )zH  with respect toB . The weight 

update rule will then be a gradient descent in the direction of 

maximum joint entropy. More computationally efficient 

approaches have been proposed in [11]. If we define the term 

score function ( )vϕ  as: ( ) ( )( ) ( )vvvv pp ∂∂=ϕ , then an 

efficient weight update is: 

( )( )BIB vv .. T- ϕ∆ ∝                        (5) 

The form of ( )vϕ  plays a crucial role because it is function of 

the transfer and therefore a function of the source estimate. For 

the sub-Gaussian sources, the form of ( )vϕ  is such as: 

( ) ( )vvv tanh-=ϕ , where ( ).tanh  is the hyperbolic 

tangent. For the super-Gaussian sources, ( )vϕ  takes the form: 

( ) ( )vvv tanh+=ϕ . The switching between the sub-

Gaussian and super-Gaussian learning rule is [10]: 

( )( )BIB vvvv ... TT.tanh- −∝ Κ∆             (6) 

Κ is a N-dimensional diagonal matrix with elements 

( )( )i4 vksign . ( )i4 vk  is the kurtosis of the source estimate iv .

The switching parameter ( )i4 vk can be derived from the general 

stability analysis of separating solutions [9], [11]. 

5. EXPERIMENTAL RESULTS 

A real POLSAR data provided by the SIR-C system [4] are used 

to evaluate the proposed model. The data were acquired over the 

Orgeval site (east of Paris, France, 329x329pixels) during 

summer 1994 and correspond to bands C and L with HH and HV 

polarizations for each. The four bands are shown in Fig. 4. The 

extracted PC images are given in Fig. 5. Most of the information 

contained in the original images is now concentrated in the first 

PC image, which is an image of quality. Second and third PC 

images contain mainly noise more than information. The fourth 

PC image is very noisy and no information can be extracted from 

it. The SNR values of the original and PC images are given in 

Table 1. The original images have ratios ranging from 4.20 to 

18.84. While the SNR value in the first PC image is improved to 

26.62; this corresponds to a factor of 1.41 compared with the 

best original image (L band-HV). Note that the gray levels in the 

first PC image are reversed compared to the L band-HV. We 

have used as input for the ICA-based part only the first PC 

image. The obtained IC image is shown in Fig. 6, which is an 

image of very high quality and better contrasted than the first PC 

image. In fact, when all PC images are used as input vector, the 

results are not significative. This can be justified by the fact that 

the Infomax algorithm is efficient only in the case where the 

input data have low noise [10], [5]. We quantify the speckle 

level by computing the CR value, which is the average value of 

the standard deviation to mean ratios calculated in small 

homogeneous areas of the observed scene. The speckle reduction 

is quite evident when comparing the IC image with the first PC 

image. The first PC image has a CR of 0.58, while the IC image 

reduces the speckle level to 0.39.  

6. CONCLUSION

The particularity of the suggested model for POLSAR image 

analysis lies in the exploitation of the proper advantages of both 

PCA and ICA. PCA is used to provide PC images that are 

uncorrelated and having an improved SNR. The dimensionality 

reduction can be made at this stage by retaining only the first PC 

image. The speckle information as well as the mutual 

independence with respect to the higher-order statistics are 

treated by ICA. The speckle is separated from the first PC image 

and a new IC image that has an improved contrast is provided. 

Thus, the IC image is quite effective for scene interpretation. The 

method is more general than PCA or ICA approaches separately 

used, and it is a powerful tool for interpreting and analyzing the 

complex scene acquired by POLSAR sensors. 
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First PCA network            Second PCA network 

     Fig. 1. PCA-ICA neural network model.                    Fig.2. PCA-based part of the model.             Fig. 3. ICA-based part of the model. 

Table 1. Signal-to-Noise Ration (SNR) values in the original POLSAR images and PC images.  

Images C Band-HH C Band-HV L Band-HH L Band-HV First PC Second PC Third PC Fourth PC 

SNR values 4.205 8.529 12.575 18.840 26.620 3.978 3.247 2.022 

(a) C Band-HH                               (b) C Band-HV                                       (c) L Band-HH                               (d) L-Band-HV 

Fig. 4. The four original POLSAR images. 

 (a) First PC image                        (b) Second PC image                               (c) Third PC image                         (d) Fourth PC image  

Fig. 5. The four extracted principal component (PC) images using the PCA-based part of the model.   

Fig.  6. The extracted independent component (IC) image using the ICA-based part of the model.  

PCA ICA 
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