
A COMPLEXITY COMPARISON BETWEEN MULTILAYER PERCEPTRONS
APPLIED TO ON-SENSOR IMAGE COMPRESSION

José Gabriel R. C. Gomes, Sanjit K. Mitra∗

University of California,
Santa Barbara, CA 93106 USA

E-mail: (gabriel,mitra)@ece.ucsb.edu

Rui J. P. de Figueiredo

University of California,
Irvine, CA 92697 USA
E-mail: rui@ece.uci.edu

ABSTRACT

A multilayer perceptron (MLP) can be used to implement a
vector quantizer (VQ) under severe constraints in the computa-
tional complexity allowed. Such constraints are typical in applica-
tions such as focal-plane image compression, in which we are in-
terested in eliminating the analog-to-digital (A/D) converters and
mapping the analog data directly into a compressed bit stream, to
save energy and silicon area. We compare a nonlinear MLP called
Kernel Lattice Vector Quantizer (KLVQ) and a clustering MLP
known as Cluster-Detection-and-Labeling (CDL) network, with
regard to their hardware requirements. We show that for similar
rate-distortion performances, the KLVQ has complexity smaller
than that of the CDL network.

1. INTRODUCTION

Multilayer perceptrons (MLPs) can be used in image-sensing ap-
plications, to implement low-complexity compression schemes that
map vectors of analog samples directly into binary codewords.
This direct mapping saves hardware by completely eliminating
the analog-to-digital (A/D) converters that are traditionally used
for encoding each pixel value before digital image compression is
done. Self-Organizing Maps (SOMs) [1] have been already im-
plemented for analog-hardware data compression, because of their
similarity with full-search vector quantization (VQ). However, the
lack of structure in their codebooks results in a high complexity
that prevents the use of SOMs for focal-plane image compression.
Linear MLPs previously described [2] would be able to achieve
compression performance similar to that of full-search VQ, but
with less than half the computational complexity. We also showed
in [3] how to exploit this large computational gap, by using tanh(x)
activation functions and a direct design based on a data lattice and
Kernel principal component analysis (Kernel PCA). This approach
was called Kernel lattice vector quantization (KLVQ).

Another class of MLPs, called Cluster-Detection-and-Labeling
(CDL) networks, has been proposed by Eltoft and de Figueiredo
[4], to solve clustering problems very efficiently. If the number
of clusters is made large enough, the CDL networks can also be
applied to signal compression. In this paper, we study simple 2-D
examples of KLVQ and CDL networks for a low-complexity im-
age compression application, comparing them in terms of physical
device (hardware) count and compression performance.

∗This work was supported in part by CAPES/Brazil, by a University
of California MICRO grant with matching support from Philips Research
Laboratory, and in part by Microsoft Corporation.

Fig. 1. The training set is generated by partitioning 21 images
into 4 × 4 pixel blocks. The DC level of each block is encoded
with 4-bit DPCM. An integer-value transform [5] is applied to the
residual blocks, and only the first two components are kept. The
test set, from different images, is 50% larger than the training set.

2. KLVQ REVIEW

Kernel PCA follows most of the ideas of PCA, but includes a map-
ping into a feature space of very high or infinite dimension, where
the data covariance matrix is computed, and where separations of
the data are supposed to be done with simpler surfaces [6], [7]. The
problem is that the number of principal components in the feature
space is as large as the number of data vectors available for covari-
ance computation, so that a low-complexity hardware description
of every eigenvector becomes impossible.

KLVQ [3] approaches this problem by reducing the amount of
data vectors, in order to keep a minimal representation of the shape
of the data density. Assuming the data to have Laplacian density
(Fig. 1), we generate new data vectors that are regularly distributed
over a pyramidal lattice. For example, the smallest lattice that can
be used to represent a 2-D pyramid is the triangle with vertices
e0 = (0, 0), e1 = (1, 0) and e2 = (0, 1). After warping with a
Kernel k(x, ei) = tanh(gxT ei) (see Fig. 6), these vectors de-
scribe a subspace with 2 dimensions, embedded in a vector space
of infinite dimension. The eigenvectors are described by a few
(six) coefficients that may be represented with analog hardware
[8]. The implementation can be summarized as follows. Given an
input vector x from a data set (training or test) X, we evaluate the
vector of Kernels k(x, ei):

z = tanh

(
g

[
0
x

]
+ b

)
(1)

Then we compute the projections over the principal components in
the feature space, by means of a matrix-vector multiplication plus
bias applied to z:

y = W(g, b)z + b(g, b) (2)

V - 7530-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

Fig. 2. A KLVQ designed using the training data set in Fig. 1. The
thresholds assigned to y1 are shown by solid contour lines in the
left plot, and those assigned to y2 are shown in the right plot. The
reconstruction code-vectors are represented by the dark dots.

The pair of parameters (W,b) is computed by Kernel PCA.
All input vectors x are then given binary codes, obtained from
scalar quantization of each component of y. By scalar quantization
of y, we are actually performing VQ of x. The thresholds of all
scalar quantizers are stacked in a parameter vector t. The centroids
of the cells of vectors x with the same code can be computed and
stored in a codebook C, to be used as VQ reconstruction vectors
cj . Given the training set X, the pair (H, D) is a function only of
t, g and b, and these parameters can be chosen to minimize a cost
function J = D + λH . We choose values of gain and bias from a
fine grid defined over a rectangle g1 < g < g2 and b1 < b < b2,
and for each (g, b) the threshold vector is computed by a nonlin-
ear unconstrained optimization routine (the Nelder-Mead simplex
method, available in MATLAB as fminsearch.m), so that the mean-
squared reconstruction error (MSE, equivalent to choosing λ = 0)
is minimized. Plotting all (H(g, b), D(g, b)) points together and
selecting only those on the lower convex hull is equivalent to per-
forming optimization using different Lagrange multipliers. An ex-
ample of 6-bit VQ designed from the training data in Fig. 1 is
shown in Fig. 2. The dark dots indicate the vectors in the code-
book.

3. CDL NETWORK REVIEW

The CDL network is a two-layer MLP proposed in [4] for clus-
tering applications. The first layer has a complete description of
a set of prototypes and thresholds that are used to decide on the
membership of a given input x to a corresponding cluster. Each
cluster ci, i = 1, ..., N , is represented by a set of prototypes pij ,
j = 1, ..., Pij . We decide whether x is sufficiently close to one
of the prototypes simply by comparing the Euclidean distance be-
tween them to a threshold:

d(x,pij) = (x − pij)
T (x − pij) > ξ (3)

What makes the implementation possible in MLP format is the fact
that this radial-basis computations can be implemented as inner-
products for each neuron and comparison with variable thresholds:

tij = (pT
ijpij − ξ + xT x)/2 −→ xT pij < tij (4)

This similarity criterion can be physically implemented by a zero-
level hard-limiting unit without a variable threshold (f(x) = sgn(x)),
if we append xT x to the ij-th neuron inputs:

bij = (ξ −pT
ijpij)/2 −→ [xT xT x]

[
pij

−0.5

]
+ bij < 0 (5)

Fig. 3. A CDL network for VQ, designed using the training data
set in Fig. 1. The prototype-cluster assignment is shown in the left
plot. The right-hand side plot repeats the decision boundaries and
shows the code-vectors at the gravity center of each partition.

The second layer can operate in two different modes: training
and classification (test). In training mode, we start with a neu-
ral network with only one prototype (which is the first input of
the data set), and follow the three-stage training method explained
in [4] (CDL-NoMerging, CDL-Merging and Cluster Evaluation).
Depending on p and ξ, some inputs x may not be encoded during
the training. The design parameters are shown in Table 1.

After the design is complete, we implement the output of the
first layer using a winner-takes-all (WTA) operation, which has the
same function of the MAXNET [7] and the similarity thresholds
mentioned in the equations above are not used for evaluation. In
Fig. 3, we show an example of a VQ that was designed following
this method, together with tentative reconstruction code-vectors
computed by averaging the CDL network partition of the training
set X. For the hardware implementation of the second layer in test
mode, we will need a network that maps the minimum-distance
winner decision into a binary codeword that describes the winner.
It is illustrated in Fig. 4 for the case of 8 prototypes, each of them
representing one cluster.

4. COMPLEXITY ESTIMATION EXAMPLE

We seek an expression for computational complexity in terms of
the number of hardware units required for a mixed-signal imple-
mentation, and so we use a CMOS transistor as the complexity
unit in this work, instead of counting multiplications, additions
and comparisons per pixel. In order to make the transistor count,
we make approximations based on neural network implementation
details from [9] and [10]. We explain the method by means of an
example showing the complexity evaluation of the systems in Figs.
2 and 3. The complexity offset due to color conversion (RGB to
luminance), DPCM and linear transform coefficient computation
is also included. It is the same for both systems. We do not count
the transistors for optical sensing, since they are also present in
conventional sensors that use A/D converters.

Table 1. Parameters for CDL Network design.
nmin n

(∗∗)
limit ξL α

1 4500 2ξ
(∗)
0 0.9

(*) ξ0 = K × dav , where dav = 0.083 is the average distance between
the input vectors x in Fig. 1. To design vector quantizers with 2, 4, 8, 16,
32, 64, and 128 clusters, we chose K = 1, 1, 2, 3, 8, 23, and 102.
(**) The training set has approximately 4800 vectors (taken from the
database of 480000 pixel blocks in Fig. 1, decimated by 100), and at least
4500 should be classified, in training mode, before the training stops.

V - 754

➡ ➡

Fig. 4. The second layer of a CDL network maps a vector ej (all
zeros, and a “1” in the position j of the winning prototype) into
a binary code for position j. The controlled current sources just
copy the values of the current sources at their bottom, buffering
the values so that currents can be appropriately added to generate
the binary code. Some prototypes need more buffering than others.

4.1. Complexity Offset

The first step is color conversion from R, G and B sensors into
luminance – we do not consider the compression of Cb and Cr

data in this work. That can be thought of as an inner product
dY = vsT , with v = [0.299 0.587 0.114] and s = [sR sG sB].
An inner product of N -component vectors in which one of them
is constant is assumed to take N + 2 transistors1 in analog im-
plementations of very low complexity and good precision [10]. So
the operation above takes 5 transistors for each pixel, which means
θ1 = 80 transistors over a block of 4 × 4 pixels. Computing
dY = vsT for every pixel in the block results in a 16-component
vector of luminance data (dY), that we denote as d for simplicity.
The next step is to find the difference with respect to the estimated
mean (DC level) for DPCM: ∆µ =

∑
di/16 − µ̂, which is an

inner product of size 17 (θ2 = 19), and to quantize ∆µ with 4
bits. A simple implementation of a 4-bit flash scalar quantizer re-
quires 15 hard-limiters, as shown in Fig. 5, and a total of θ3 = 60
transistors. The quantized value Q(∆µ) can be obtained from the
15 outputs of the scalar quantizer by means of an inner product
plus a bias, which is an inner product of size 16 (θ4 = 18). The
updated estimate of the mean is obtained by scalar accumulation,
i.e. µ̂new = µ̂ + Q(∆µ), which is an inner product of size 2, and
requires at least the gate capacitance of one transistor for the delay
memory, taking θ5 = 5 transistors. Finally, we compute a linear
transform [5] of the mean-removed vector v = d − µ̂u, where u
is the column-vector whose components are all equal to one, and
keep only the first two coefficients:

x =

[
x1

x2

]
= Hv = Hd − µHu (6)

This corresponds to two inner products of size 16 plus bias (or
two size-17 inner products). The complexity is therefore θ6 = 38
transistors. Adding all the estimates θj , j = 1, ..., 6, we obtain the
total θoffset = 220 transistors, or 13.8 transistors/pixel.

4.2. Complexity of KLVQ

The computation of Eq. (1) requires 4 transistors per non-zero
input operation (see Fig. 6), which takes τ1 = 8 transistors. The

1An inner product of N -component analog vectors, where one of the
vectors is constant, requires N + M transistors [10]. M is the number
of transistors in the current conveyor where the N transistor outputs are
added in current mode. For our computational complexity analysis, we
have assumed M = 2 as in [9].

Fig. 5. Implementation of a B-bit scalar quantizer using 2B − 1
comparators. V1 to V15 are voltage thresholds in ascending order.

computation of y = Wz+b (Eq. (2)) requires two inner products
of vector of size 2, plus a bias (i.e. two inner products of size 3),
so that τ2 = 10 transistors are required (as shown in Sec. 4.1).
Most of the computational complexity of the KLVQ encoder lies
on the scalar quantization of each component of y, in this case y1

and y2. If we use three bits for representing y1 using a flash A/D
converter, that requires 4+2+1 = 7 comparators, and the same for
y2, as shown in Fig. 5, with a total of 14 comparators. So the total
amount of transistors for SQ of y is τ3 = 56. Adding τ1 +τ2 +τ3,
we obtain 74 transistors, or 4.6 transistors/pixel. Including the 13.8
transistors/pixel offset (θoffset), we obtain the overall complexity
of this KLVQ example: TKLV Q = 18.4 transistors/pixel. In Figs.
8 and 9, the KVLQ from Fig. 2 appears as the rightmost of the 3
points with complexity 18.4.

4.3. Complexity of CDL Network

The CDL network shown in the left part of Fig. 3 has 281 proto-
types, but a computation of Euclidean distances is required only
for the 164 prototypes that are closest to the decision boundaries.
According to Eq. (5), 164 inner products of size 3 have to be im-
plemented, so τ1 = 820 transistors. The computation of the norm-
square x2

1 + x2
2 requires two transistors (quadratic distortion), so

τ2 = 2. After all Euclidean distances are computed, the WTA op-
eration can be implemented at a cost of 2 transistors per prototype,
as shown in Fig. 7, so τ3 = 328 transistors are required at that
stage.

The second layer has to do binary coding of the WTA results.
As shown in Fig. 4, WTA outputs that have only one output con-
nection do not require buffering, and WTA outputs that are as-
sociated with the [000000] codewords are not even connected to
the output. Assuming 1 transistor per current-mirror buffer and 1
prototype per cluster, the total number of transistors in the second
layer is

N ×CN,N +(N −1)×CN,N−1+ ...+0×CN,1 +0×CN,0 (7)

where Cn,p = n!/(p!(n − p)!). In the case of the 6-bit CDL net-
work of Fig. 3, we have a summation of 64 terms represented as
c = [6 5 5 5 5 5 5 4 ...0 0 0], weighted by the number of pro-
totypes per cluster, which is a vector with components sorted in

Fig. 6. Implementation of f(x) = tanh(gx+b) with 4 transistors.

V - 755

➡ ➡

Fig. 7. WTA evaluation, using two transistors per prototype [9].

ascending order (n = [1 1 1 1 ...5 5 7 155]), so that more compli-
cated clusters can be represented with less hardware. The weighted
summation cnT is τ4 = 292. Adding τ1 + τ2 + τ3 + τ4, we ob-
tain 1442 transistors, or 90.1 transistors/pixel. Including the 13.8
transistors/pixel offset (θoffset), we obtain the overall complexity
of this CDL network example: TCDL = 103.9 transistors/pixel.
In Figs. 8 and 9, the CDL network from Fig. 3 appears with the
103.9 complexity.

5. SIMULATION RESULTS AND CONCLUSIONS

We designed KLVQs with bit allocations varying from [0; 1] to
[4; 3]. For design and test, we follow the description provided in
Sec. 2 and choose values of gain varying from 0.005 to 10 and bias
varying from −1.5 to 10. For each (g, b), distortion minimization
was performed for all bit allocations and the (H, D) values of the
best encoders were applied to a program for computation of the
lower convex hull points. To design CDL networks with 1 to 7
bits of resolution, we followed the procedure mentioned in Sec. 3
and kept increasing K (Table 1) until the desired number of clus-
ters was achieved. The KLVQs and CDL networks were tested for
compression performance and the computational complexity was
computed according to Sec. 4. Figures 8 and 9 compare the per-
formance of KLVQ and CDL networks with respect to hardware
requirements for compression applications only. It should be noted
that CDL networks achieve a lower distortion at low entropy. How-
ever, KLVQ has lower complexity over all the range of entropies
used in the simulations. In the CDL network, many prototypes are
used to represent a few clusters (as shown in the left part of Fig. 3),
which causes the first layer of the network to be large, a property
that applies to the description of clusters with complicated shapes
in classification problems.

Fig. 8. Compression performance and complexity (training set).

Fig. 9. Compression performance and complexity (test set).

6. REFERENCES

[1] T. Kohonen, Self-Organizing Maps, Springer-Verlag, Berlin;
Heidelberg; New York.

[2] J. G. R. C. Gomes and S. K. Mitra, “Analog multilayer
perceptron implementation of low complexity VQ for image
compression,” in Proc. IEEE Int. Conf. Image Processing,
Barcelona, Spain, September 2003, pp. II.279–II.282.

[3] J. G. R. C. Gomes and S. K. Mitra, “Kernel PCA for quan-
tization of analog vectors on a pyramid,” in Proc. IEEE
Int. Workshop on Neural Networks for Signal Processing,
Toulouse, France, September 2003, pp. 579–606.

[4] T. Eltoft and R. J. P. deFigueiredo, “A new neural network
for cluster-detection-and-labeling,” IEEE Trans. Neural Net-
works, vol. 9, no. 5, pp. 1021–1035, September 1998.

[5] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerof-
sky, “Low-complexity transform and quantization with 16-
bit arithmetic for H.26L,” in Proc. IEEE Int. Conf. on Im-
age Processing, Rochester, NY, USA, Sep 2002, pp. II.489–
II.492.

[6] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear com-
ponent analysis as a kernel eigenvalue problem,” Neural
Computation, vol. 10, pp. 1299–1319, 1998.

[7] R. J. P. de Figueiredo, “A new nonlinear functional analytic
framework for modeling artificial neural networks,” in IEEE
Int. Symp. on Circ. and Syst., New Orleans, LA, May 1990,
pp. 723–726.

[8] G. Linán, A. Rodrı́guez-Vázquez, S. Espejo, and
R. Domı́nguez-Castro, “ACE16K: A 128×128 focal
plane analog processor with digital I/O,” in Proc. 7th IEEE
Int. Workshop on Cellular Neural Networks and Their
Applications, 2002, pp. 132–139.

[9] A. G. Andreou, K. A. Boahen, P. O. Pouliquen, A. Pavasović,
R. E. Jenkins, and K. Strohbehn, “Current-mode subthresh-
old MOS circuits for analog and VLSI neural systems,” IEEE
Trans. Neural Networks, vol. 2, no. 2, pp. 205–213, March
1991.

[10] G. Linan, Diseno de Chips Programables de Senal Mixta
con Bajo Consumo de Potencia para Sistemas de Vision
en Tiempo Real, Ph.D. Dissertation, University of Seville,
Spain, June 2002.

V - 756

➡ ➠

