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ABSTRACT 

A general framework is presented to realize 3-D object recogni-

tion invariant to object scaling, deformation, rotation, occlusion, 

and viewpoint change. This framework utilizes densely sampled 

grids with different resolutions to represent the local information 

of the input image. A Markov random field (MRF) model is then 

created to model the geometric distribution of the object key 

nodes. Flexible matching, which is aim to find the accurate corre-

spondence map between the key points of two images, is per-

formed by combining the local similarities and the geometric 

relations together using the highest confidence first (HCF) 

method. Afterwards, a global similarity is calculated for object 

recognition. Experimental results on Coil-100 object database are 

presented. The excellent recognition rates achieved in all the 

experiments indicate that our approach is well-suited for appear-

ance-based recognition. 

1. INTRODUCTION

In real-world scenes, the representation of a 3-D object may be 

modified due to multiple factors such as: i) object scale, view-

point and illumination variations; ii) partial occlusion; iii) noise 

data; iv) object deformation. Human can distinguish different 

objects easily without considering these variations. However, this 

is a quite difficult task for computer vision systems. Most object 

recognition approaches aim to find object features and then 

match these features between the observed data and the object 

databases. Generally, this problem can be traced back to establish 

the relation between two images. In the following we will present 

a novel method to solve this visual correspondence problem. 

There are numerous research efforts dealing with the object 

recognition problem and the existing approaches can mainly be 

classified into two distinct categories: global feature based ap-

proaches and local feature based approaches. The global feature 

based approaches extract global image features such as color 

histograms [1], and receptive field histograms [2]. Global fea-

tures are robust to scale and viewpoint changes, but it has been 

difficult to extend them to partially occluded and noise images. 

Methods based on support vector machines [3, 4], SNoW (Sparse 

Network of Winnows) [9], and eigenspace matching [5] can 

handle images corrupted by noise and partially occlusions suc-

cessfully, but fail to recognize viewpoint variant or heavily oc-

cluded objects. The local feature based approaches identify local 

feature points, and then create a local image descriptor at each 

interest point [6, 7]. Object matching is performed by finding 

similar point pairs between test images and training models. 

Advantages of the local image features are that they are only 

partially affected by object occlusion, viewpoint modification, 

and deformation. However, their recognition results depend on 

the accuracy of the point detection. Points detected in one object 

may be missed in another image of the same object. Furthermore, 

no geometric constraint between interest points is utilized to 

rectify the matching results. 

Our method uses dense local features that sampled at a large 

number of repeatable locations to represent objects. Markov 

random field models are established to model the geometric 

constraints between object key points. The matching program is 

composed of two procedures: local matching and global match-

ing. Local matching procedure calculates the similarities between 

the key points of two images. In the global matching procedure, 

the highest confidence first method is introduced to reach a local 

minimum of the MRF model. This final result decides which 

pairs of key points correspond to the same point and which points 

have no corresponding partner in the other image. Our object 

recognition method is evaluated using the Coil-100 object data-

base containing 7200 image of 100 objects. Different numbers of 

images are selected as training examples, and the remaining as 

test images. We also test our method on the images corrupted by 

synthetically generated rotation, scaling and occlusions. The 

remarkable recognition rates show the potential of our approach 

in the problem of recognizing 3D objects. 

The remainder of the paper is organized as follows: The fol-

lowing section presents our approach in detail. Section 3 de-

scribes the local and global matching procedures. Some experi-

ments and comparisons are given in Section 4. We conclude this 

paper in Section 5.

2. GENERAL FRAMEWORK 

2.1. Motivation 

As mentioned above, objects can be represented by local fea-

tures. These local features are computed at some interest points, 

which can be extracted using corner detectors. Object matching is 

performed by comparing the features of the key points between 

two images. However, the detected positions of these key points 

will be influenced by image transformations. Thus for two im-

ages of the same objects, some points in the first image cannot 

find their accurate partners in the second one. In addition, the 

geometric positions of the key points have some relations even 

after complex transformations. For example, considering a key 

point in the first image, the accurate partners of its neighbor key 

points are also located in the neighborhood of its partner in the 

second image. This information should be considered. 

To solve these problems, this paper introduces two kinds of 

topological grids. The first kind of grid is utilized to extract local 

image features, while the other grid combine these local features 

with the geometric constraints between grid nodes. Unlike previ-

ous approaches, our method does not identify key locations. Thus 

we do not have to consider the accuracy of point detection, and 

the algorithm complexity is decreased. In our framework, the 
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interest points are equidistantly distributed on different levels, 

and these points are sampled densely enough to cover most of the 

object details.

2.2. MRF-based Framework  

We call the first kind of grid “local grid”, and the second kind of 

grid “key grid”. The nodes of these grids are equidistantly sam-

pled. The local grid is composed of several levels of local nodes 

(Fig. 1a-b). The distance between two adjacent local nodes of a 

sampling level k is defined as Dlocal(k) (Fig. 1e). The key grid is 

introduced to perform the match between two images (Fig. 1c). 

Dkey is the distance between two adjacent key nodes (Fig. 1d): 

Vstad is a standard value that decides the resolution of the key 

grid, and F(image) is calculated from some physical parameters 

of the input image, such as the image pixel number, or the image 

bounding box. Dlocal(k) is formulated as: 

where K is the maximum level number. For example, K is equal 

to 2 in Fig. 1. 

Since Dkey is much larger than Dlocal(k), in the neighbourhood 

of each key node (Fig. 1d), there are several local nodes. These 

local nodes are used to calculate the similarity between two key 

nodes in the matching procedure.  

Given two images of the same objects, assume that the 

neighbourhood of two key nodes A and B correspond to the same 

region on the physical object. The corresponding partners of the 

neighbour key nodes of A should also be adjacent to the node B.

On the other hand, if we have already determined the partners of 

the neighbour nodes of A, then the coordinate of B depends 

mainly on two factors: one is the similarity between A and B, and 

the other is the positions of these partners. Therefore, this issue 

can be modeled by a Markov random field model. As shown in 

Fig.2, a 12-node neighbourhood and its associated clique are 

defined in our MRF model. More details of the potential calcula-

tion and the relaxation algorithm will be described in Section 3.2.

2.3. Color Histograms 

Researchers have developed many local image descriptions, such 

as color histograms, Gabor features, differential invariants, and 

scale invariant features. To accelerate the test experiments, we 

take use of the color histogram description. 

Color histograms are popular used in many applications be-

cause they are trivial to compute, and robustly tolerate image 

transformations and changes in camera viewpoint. We quantize 

colors into a set of K representative colors C = {c1, c2, …, cK}.

For each local node, we compute the color histogram feature 

using its neighbor pixels. 

Two color histograms H1 and H2 are compared by computing 

their intersection, an idea introduced by Swain and Ballard [1]. 

The intersection is  

This intersection is equal to a value between 0 and 1. We de-

fine this data as the similarity Slocal between two local nodes.

3. TEMPLATE MATCHING 

3.1. Local Matching 

The objective of the local matching procedure is to find the simi-

larity Skey between two key nodes. This data is calculated from 

the similarities between the local nodes that located in the 

neighbourhood of the two key nodes.  

In Fig.3a, two key nodes K1 and K2 are displayed. Local nodes 

located in their neighbourhood are signed as (A1, A2, …, AN) and 

(B1, B2, …, BM), respectively. Slocal(i, j) is defined as the 

similarity between the local node Ai and Bj. To obtain Skey, we 

first extract data SAi, i = 1,2,…, N for A1, A2, …, AN, which 

describes the similarities between these nodes and their optimum 

matching points in K2’s neighbourhood. Since A1, A2, …, AN  are 

uniformly distributed, Skey can then be estimated from these data. 

The largest value of Slocal(i, j), j = 1, 2, …, M can be selected 

as SAi. However, this method will incur matching errors. Since 

the local nodes are equidistantly sampled, usually the best match-

ing point of Ai is not sampled as a local node in the second im-

age. For example, in Fig.3b, Ci is the best point. Bl, Bk, and Bm are 

its neighbour nodes. The three nodes can only serve as Ai’s ap-

proximate partners. Nevertheless, since the local nodes of our 

framework are densely distributed, the local features of Bl, Bk,

and Bm are similar to the feature of Ci. Hence we use not only the 

largest similarity Slocal(i, m1), but also the second and the third 

largest value Slocal(i, m2), Slocal(i, m3) to calculate SAi:

The coordinate of Ci are also reconstructed: 
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        (a)               (b)            (c) 
Fig.3 Local and global matching (See text for details).

(a), (b): matching between two key nodes K1 and K2. (c): 

geometric potential calculation.   

       (a)                        (b) 

Fig.2 12-node neighbourhood (a) and its associated 

clique (b). 

     (a)                        (b) 

       (c)                  (d)        (e) 

Fig.1 (a), (b): two level local grid. (c): key grid. (d):

neighbourhood of the key node A (gray regions). (e):

neighbourhood of the local node B (gray regions). 
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Based on the same principle, the coordinates of the two key 

nodes K1 and K2 may be incorrectly matched. Thus we integrate 

the coordinates of Ci (i = 1,2,…, N) with SAi to calculate the 

positions of the two matching point P1 and P2 (Fig.3a): 

To compute the local similarity Skey, we have to consider all 

the neighbour pixels of K1. Each point may be located in the 

neighbour regions of multiple local nodes. Among the similarity 

of these nodes, we can obtain a maximum data. Then Skey is 

formulated as: 

Here D is a neighbour pixel, )( 1K denotes the neighbour 

points of K1, )( iA  denotes the neighbour points of Ai.

intpoN is the number of pixels in )( 1K . Note that the match-

ing point of K1 may be another one if the matching destination 

changes form K2 to another key node. In addition, if Skey between 

two key nodes is lower than a threshold, we judge that the two 

key nodes are dissimilar. In this case, the two key nodes are 

directly set as the best matching points.

3.2. Global Matching 

Given two images I1 and I2, the local matching procedure has 

calculated the similarity between every two key nodes of the two 

images. The global matching procedure combines these results 

with I1’s MRF model to decide the corresponding map between 

the key nodes of I1 and I2.

Our MRF model is composed of: 

a set of sites S = {s1, s2, …, sn}. Each site corresponds to a 

key node of I1.

a set of possible labels for each site 

nmi sssilll ,,},,,,{ 2121
. These labels 

correspond to the key nodes of the second image I2.

Then we have the conditional posterior potential for each site: 

where cic : means any clique c containing the site si. As-

sume that ji l , then )|( ii sV  is the negative of the 

similarity between the key nodes si and lj of the two images. The 

other item gives the geometric potential of the current node. The 

item contains only one component because only one clique is 

defined (Fig.2b). sNi defines the twelve neighbour nodes of the 

site si.

Assume that in Fig.3c, the key node K1 corresponds to the site 

si, K2 corresponds to the label lj. P1 and P2 are their matching 

point. N1 is a neighbour node of K1. Its accurate partner is N2. P3

and P4 are their matching points. Two parameters can be ob-

tained from the lengths and directions of the two lines P1P3 and 

P2P4:

where Dkey is defined by (1). The two data describe the length 

ratio and direction difference between the two lines. If K2 is K1’s

accurate partner, for each one of the twelve neighbour nodes of 

K1, the two parameters should remain approximately unchanged. 

Furthermore, the length ratio is close to 1.0. Hence the potential 

)|( Niic ssV  is formulated as: 

Here w1, w2 and w3 are three weights, avg_r is the average of 

the twelve ratios, var_r is their variance, and var_ddir is the 

variance of the twelve direction differences. 

The highest confidence first (HCF) algorithm [8] is a determi-

nistic relaxation technique which can be converged to a local 

minimum of the MRF, but induce drastically less computational 

cost than a stochastic relaxation scheme. The HCF algorithm 

classifies the sites into two classes: “committed” and “uncommit-

ted”. Initially all sites are set uncommitted, and a site has no 

effect on its neighbours unless it has committed. Thus in Equa-

tion (9, 10), only committed sites are used to compute Vc.

A stability measure is calculated for each site based on the lo-

cal conditional posterior potential defined in (8). This measure 

determines the order in which the sites are to be visited. Details 

of this algorithm have been described in [8]. The procedure 

terminates when the criterion function can no longer be de-

creased by reassignment of the labels. 

After global matching, we obtain a posterior potential for each 

key node. The negative of the potential describe the local and 

geometric similarity between the current node and its partner. 

Therefore, the average value of these data is used to define a 

global similarity for the following object recognition experi-

ments.

4. EXPERIMENTS 

Our object recognition algorithm is test on the COIL (Columbia 

Object Image Library) [5] database. The COIL database consists 

of 7,200 images of 100 objects (72 views for each of the 100 

objects). The images are color images of 128×128 pixels. The 

objects are positioned in the center of a turntable and observed 

from a fixed viewpoint. For each object, the turntable is rotated 

of 5° per image (Fig.4a-b). 

We test the proposed system using all the 100 objects. Differ-

ent numbers of views are selected as the training set. For each 

object, the numbers of training images vary from 4 (one every 

90°), 8 (one every 45°), 18 (one every 20°) to 36 (one every 10°). 

The remaining images compose the test sets. The image pixel 

number is selected to calculate F(image) in (1). In addition, since 

the resolution of the key grid is decided by the standard value 

Vstad, performance of the framework with different Vstad is tested. 

Comparisons between our method and other approaches are list 

in Table 1 and 2. 
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Table 1 Recognition rates using different training sets 

Training images 400 800 1800 3600 

Test images 6800 6400 5400 3600 

Our framework 

(color&Vstad = 25)
95.75% 99.30% 100.0% 100.0%

Our framework 

(color&Vstad = 9) 
93.66% 97.89% 99.41% 99.98%

SNoW (edges)[9] 88.28% 89.23% 94.13% 96.25%

SNoW (intensity)[9] 81.46% 85.13% 92.31% 95.81%

Nearest neighbor 

(color)
79.74% 93.08% 98.91% 99.89%

Linear SVM (color) 

[3] 
83.99% 95.36% 99.31% 100.0%
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In Table 1, the image representations of the associated meth-

ods are displayed in the parentheses. Results of SNoW are cited 

from [9]. Results of the methods in Table 2 are cited from [4]. 

For the nearest neighbor classifier and support vector machines 

[3], we reduce the image spatial resolution from 128×128 to 

32×32 and then transform each COIL image into an eight-bit 

vector of 32×32×3 = 3072 components.  

Our method performs recognition with excellent percentages 

of success even in the presence of very similar objects. The 

ability of handling viewpoint changing is much higher than the 

other sited methods. The average match time between two im-

ages is no more than 30ms for the low-resolution framework 

(Vstad = 9), and 200ms for the high-resolution framework (Vstad = 

25) on a P4 1.7GHz computer. However, it still took us quite a 

long time to finish the test of the high-resolution framework. 

Therefore, the low-resolution framework is adopted to continue 

the following test, and eight images for each object are selected 

as the training set. 

Our method is invariant to image shifting, scaling and rotation. 

This ability is evaluated using synthetically generated images 

(Fig. 4c). The 7200 synthesized images are tested on the training 

set, and the recognition rate is 97.94%. 

In order to verify the systems against occlusion, test images 

corrupted by generated occlusions are also synthesized (Fig. 4d). 

Table 3 lists the results of our method and the SVM-based 

method. From the obtained experimental results, we conclude 

that our method achieves very good rates even half pixels of the 

images are occluded. 

A shortcoming of our object recognition algorithm is the abil-

ity against noise corruption. However, this drawback is mainly 

caused by the color histograms. Gabor features, which are robust 

to additive Gaussian noise, will be used to further enhance our 

system. 

Finally we show some correspondence maps between the key 

nodes of different COIL images in Fig.5.

5. CONCLUSIONS 

The main contribution of this paper is to introduce a general 

framework, which can combine the local image descriptions with 

the geometric structure of an object together to establish point 

correspondence maps between different images. Markov random 

field is introduced to model this framework. Object recognition is 

then performed from these maps. This method is successfully 

tested on the Coil-100 image database. The remarkable experi-

mental results indicate that this approach is well-suited for 3-D 

object recognition robust under viewpoints changing, occlusion, 

rotation, and scaling. More efforts will be done to further extend 

this method to detect objects in complex environments. 
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Table 3 Recognition rates for COIL images occluded by 

a randomly placed k×k window of uniformly distributed 

random noise 
k 24 48 

Our method 97.93% 96.72

Linear SVM [3] 95.32% 84.99% 

     (a)          (b)          (c)        (d) 

Fig.4 Coil-100 object database. (a), (b): two images. (c): 

a synthesized image under scaling and rotation. (d): a 

synthesized image occluded by a randomly placed k×k

window of uniformly distributed random noise (k = 48).

Representation 
Our Framework 

(Vstad =25) 

Columbia 

[5] 

Roobaert

[4] 

Color only 95.75% 77.5% 82.3% 

Shape&color --- 87.6% 86.9% 

Table 2 Comparisons between our framework and other 

methods [4] (Training images: 400)           (a)                     (b) 

          (c)                     (d) 
Fig.5 Key node correspondence maps (in dark lines) 

between different images of the same objects. The 

matching points of two adjacent key nodes are linked by

green lines. Some mapping lines are emphasized in red 

color. (a), (c): Vstad = 9. (b), (d): Vstad = 25. 
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