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ABSTRACT

Feature extraction techniques are widely used in many 
applications to pro-process data in order to reduce the 
complexity of subsequent processes. A group of kernel-based 
Fisher discrminant analysis (KFDA) algorithms has attracted 
much attention due to their high performance. In this paper, the 
inherent limitations of those KFDA algorithms have been 
discussed and the novel algorithm will be proposed to 
effectively overcome those limitations. Experimental results on 
face recognition suggest that this proposed algorithm is superior 
to the existing methods in terms of correct classification rate. 
Keywords: Feature extraction, kernel Fisher discriminant 
analysis, face recognition. 

1. INTRODUCTION 

Feature extraction is one of the most significant and fundamental 
problems in many applications such as pattern recognition and 
data mining, and extracting efficient feature is always the key to 
solving a problem in those applications. Principal component 
analysis (PCA) and linear discriminant analysis (LDA) are two 
classic tools widely used for data reduction and feature 
extraction [1,2,3,4,7]. For solving problems of classification, it is 
generally believed that LDA-based algorithms outperform PCA-
based ones, since the former optimizes the low-dimensional 
representation of the objects with focusing on the most 
discrminant feature extraction while the latter only achieves 
simply object reconstruction [2]. Although LDA-based 
algorithms have been proven successful on classification 
problems, those algorithms fail for a nonlinear problem and are 
inadequate to describe the complex and nonlinear patterns. 

Recently, the extension of linear methods to nonlinear ones, 
using the so-called kernel trick that was first used in Support 
Vector Machine (SVM) can efficiently construct nonlinear 
relations of the input data in a very high-dimensional feature 
space obtained by a nonlinear mapping :

N

x R f F ,
and then they only depend on inner products in the feature 
space F , but need not to compute in the feature space explicitly 
[5,6,8,9]. As nonlinear extensions of PCA and LDA, kernel PCA 
(KPCA) and kernel Fisher discrminant analysis (KFDA) have 
already been shown to provide a better performance than a linear 
PCA and LDA in several applications, respectively [5,6,8,9,10]. 
The basic ideas of KPCA and KFDA are to first map the input 
date x into a feature space F via a nonlinear mapping and then 
perform PCA and LDA in F , respectively. Since KPCA is 
inadequate for discriminating purposes as same as PCA, KFDA-
based algorithms can outperform KPCA-based ones for solving a 
problem of classification [8,9]. Mika et al. [6] first proposed the 
two-class nonlinear discriminant algorithm by the kernel trick 
and G.Baudat et al. [5] extended this algorithm to multiclass 
problems. Subsequently, another form of multiclass nonlinear 
discriminant algorithm was also developed [8]. However, the 
general KFDA-based algorithms have two limitations: 1) in the 

case of small sample size problem (SSSP), these algorithms 
discard some significant discriminatory information; 2) these 
algorithms only extracts at most 1c meaningful features, where 
c is the number of classes involved. In this paper, we propose a 
modified kernel-based nonlinear feature extraction algorithm, 
which can break the limitations above and is very useful for the 
SSSP. This proposed algorithm has the properties: in the space 
spanned by the first 1c optimal discrminant vectors in the 
feature space F , the within-class distance of the training 
samples in the feature space F  equals to zero, while the 
between-class distance of the training samples in the feature 
space F does not equal to zero; in the space spanned by the 
remaining optimal discriminant vectors in the feature space F ,
some other discriminatory information is also obtained. We 
apply this modified algorithm to face recognition, where the 
SSSP widely exists and the pattern distribution is generally 
nonlinear, and the experimental results reveal that this algorithm 
has the better performance for feature extraction. 

2. KERNEL FISHER DISCRIMINANT VECTORS 

For solving nonlinear problems, classic LDA has been 
generalized to its nonlinear version by the kernel trick, namely 
KFDA [6,8,9]. Let : ( )

n
x R x F be a nonlinear 

mapping from the input space to a high-dimensional feature 
space F , where different classes of objects are supposed to be 
linearly separable. The basic idea of KFDA will seek to find a 
linear transformation in F which can maximize the between-
class scatter and minimize the within-class scatter in F .
However, it is unnecessary to compute explicitly in F but
compute the inner product of two vectors in F  with an inner 
product kernel function: 

( , ) ( ( ) ( ))
T

k x y x y .                            (1) 

Let
1

{ , , }
N

X x x be the set of n -dimensional known-

class training samples; there are c classes of samples:
1
, ,

c
X X .

It means that each
i

x belongs to a class
j

X , i.e.,
i j

x X ,

1, ,i N , 1, ,j c . , 1, ,
i

N i c is the number of samples 

which belong to class , 1, ,
i

X i c ,
1 c

N N N . Then, 

let the training samples
1

{ , , }
N

X x x project into the feature 

space F via the nonlinear mapping , and obtain the corres-

ponding training samples 1{ ( )}
i

N

ix in F . The between-class 

scatter matrix
b

S , within-class scatter matrix
w

S , and population 

scatter matrix
t

S in F can be expressed as follows, respectively: 

1
( / ) ( )( )

b

c T

i i ii
S N N m m m m               (2) 

1
(1/ ) ( ( ) )( ( ) )

j i
w

c T

j i j ii x X
S N x m x m     (3) 

1
(1/ ) ( ( ) )( ( ) )

t b w

N T

i ii
S S S N x m x m       (4) 

where (1/ ) ( )
j i

i i jx X
m N x  denotes the sample mean of 

class
i

X in F ;
1

( )
N

ii
m x is the all sample mean in F . To 
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perform KFDA in F and calculate the optimal discriminant 

vectors in F , we need to maximize: 

( )

T

b

T

w

w S w
J w

w S w
                                          (5) 

The general algorithms calculating (5) are to utilize the theory 
of reproducing kernel [5,6]; in addition, a new algorithm for 
calculating (5), which will directly carry out a direct LDA 
algorithm [8] in F , has been proposed, recently. The follows 
will discuss the two approaches.

2.1 The General Algorithms for the KFDA 

By the theory of reproducing kernel, the general algorithms for 

the KFDA believe that w is in a space spanned by the training 

samples 
1

{ ( )}
N

i i
x in F  and can be expressed: 

1
( )

N

i ii
w x                                    (6) 

Inserting (6) into (5), then (5) becomes a function of 

1
( , , )

N
and can be converted to maximize: 

( )

T

b

f T

w

K
J

K
                                       (7) 

where
1
( / ) ( )( )

b

c T

i i ii
K N N M M M M ,

1
(1/ ) ( )( )

j i
w

c T

j i j ii x X
K N M M ,

with 11 1
((1/ ) ( , ), ,(1/ ) ( , ))

i iN N T

i i j i N jj j
M N k x x N k x x ,

11 1
((1/ ) ( , ), ,(1/ ) ( , ))

N N T

j N jj j
M N k x x N k x x ,

1
( ( , ), , ( , ))

T

j j N j
k x x k x x .

Therefore, the optimization solution to (7) is exactly as same as 

that to the algorithms of traditional LDA, and the maximum 

criterion ( )
f

J can be formed by m eigenvectors corresponding 

to the first m eigenvalues of
1

w b
K K . However, in the case of the 

smaller training set, 
w

K  is singular and is thus not invertible in 

practice. There are currently two methods used to circumvent 

this problem of the noninvertibility of the matrix
w

K . The first 

method is to replace the inverse matrix
1

w
K with a pseudoinverse 

matrix of
w

K , such as generalized discriminant analysis (GDA) 

[5]. However, this method tends to overfit the training set in 

some cases. The second method will introduce a nonsingular 

matrix
w w

K K I  to replace the matrix
w

K , where 0 and

is called the conditioning coefficient, and I is the identity matrix. 

However, these algorithms described above have two same 

limitations: 1) they discard the null space of
w

K , where may 

contain some significant discriminatory information; 2) since the 

rank of
b

K is no more than 1c , these algorithms mentioned 

previously only extracts at most 1c meaningful features. 

2.2 Kernel Direct Discriminant Analysis Algorithm 

Recently, a novel so-called kernel direct discriminant analysis 

(KDDA) algorithm has been proposed, and it is more useful for 

the smaller training set [8]. This algorithm generalizes the 

strengths of the recently proposed direct-LDA (D-LDA) of Yu et

al. [3] and the kernel trick, and it can effectively overcome the 

limitations of the GDA [5] that the pseudoinverse matrix can 

cause some loss of the significant discriminatory information. 

The basic idea of the KDDA directly carries out the D-LDA 

algorithm in F . As same as the D-LDA [3], the KDDA believes 

that the null space of
w

S in F may contain significant discrimina-

tory information if the projection of
b

S in F is not zero in that 

direction, and that no significant discriminatory information will 

be lost if the null space of 
b

S is discarded. As same as the D-

LDA[3], the KDDA intends to seek the intersection space 

( (0) (0))w bS S , where (0) { | 0}
wwS x S x , and (0)bS

{ | 0}bx S x . In order to obtain this intersection space, the 

KDDA will first calculate the 1c corresponding eigenvectors of 

all positive eigenvalues of
b

S to obtain the space (0)bS , and then 

calculate the eigenvalues and corresponding eigenvectors of
W

S ,

which is the projection of
w

S  in (0)bS , to obtain the space 

(0)wS . From the procedure of KDDA, it is clear that ( (0))bd S

1c , and ( (0) (0))w bd S S  1c , where ( )d  denotes the 

dimensionality of the space’ ’. However, according to the 

analysis in [4], it can be seen that ( (0) (0)) 1w bd S S c , since 

the dimensionality of the feature space F is far higher than the 

number of the training samples. As a result, the KDDA 

algorithm has the same limitations and shortcomings described 

in the general algorithms for the KFDA above. It not only loses 

some discriminatory information, but also only extracts at most 

1c meaningful features. 

3. THE NOVEL ALGORITHM FOR THE KERNEL 

FISHER DISCRIMINANT VECTORS 

In this section, a novel algorithm for the kernel Fisher 

discrminant vectors will be introduced, and it can effectively 

overcome the shortcomings and limitations of the previous 

algorithms for the kernel Fisher discriminant vectors. This 

proposed algorithm has two novel properties: 1) in the space 

spanned by the first 1c optimal discrminant vectors in F , the 

within-class distance of the training sample in F  equals to zero, 

while the between-class distance of the training sample in F

does not equal to zero (in fact, the intersection space 

( (0) (0))w bS S is completely obtained in this step); 2) in the 

space spanned by the remaining optimal discriminant vectors in 

F , some other discriminatory information can also be obtained 

in F . As same as some LDA-based algorithms, we believe that 

the optimal discriminant vectors in F can be calculated in the 

space (0)tS , where (0) { | 0}t tS x S x . Otherwise, if x

(0) { | 0}
ttS x S x , it is clear that

T

t
x S x  0

T

b
x S x , i.e., the 

between-class distance in F equals 0, which is obviously 

meaningless for classification. 

It is clear that
t

S in (4) can be rewritten here as follows: 

1
( ) ( )

N T T

t i i t ti
S x x                         (8) 

where ( ) ( ( ) )1/
i i

x x mN ,
1

[ ( ), , ( )]
t N

x x .

As similar as the KDDA, the orthonormal bases of (0)tS  can 

be obtained by calculating the corresponding orthonormal 

eigenvectors of all positive eigenvalues of
t

S . Since the 

dimensionality of the feature space F , denoted as
'

N , could be 

arbitrarily large or possible infinite, it is intractable to directly 

compute those orthonormal eigenvectors of the
' '

N N matrix
t

S .

Fortunately, as described in [1,3,8], those orthonormal 

eigenvectors can be indirectly derived from the eigenvectors of 

the matrix
T

t t
(with N N ).
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For all training samples
1

{ ( )}
N

i i
x in F , we can define 

a N N kernel matrix K as follows: 

, 1, ,

1, ,

( )
i j i N

j N

K k                                   (9) 

where
,

( ) ( )
i j i j

T
k x x

Hence, by the kernel trick, 
T

t t
can be expressed as follows: 

2

1 1 1
( ( ) )

T

t t N N N N N N N N
K K I I K I K I

N N N
(10)

where
N N

I is the N N matrix with all terms being one.

Let
i
and

i
e ( 1, ,i m ) be the i -th positive eigenvalue 

and corresponding eigenvector of T

t t
. According to 

[3,8], it is clear that the
1

2

i t i i
v e ( 1, ,i m ) can cons-

titute the orthonormal bases of (0)tS in F . Hence any 

optimal discriminant vector x in F can be expressed: 
x V y                                      (11)

where m
y R ,

1
[ , , ]

m
V v v .

Hence, the Fisher discriminant criterion ( )J w in F can
be transformed and carried out in the projective space m

R

of (0)tS . By mapping the training samples
1

{ ( )}
N

i i
x into the 

space (0)tS , the corresponding training samples 
1

{ }
N

i i
y in 

the projective space mR of (0)tS can be obtained as follows: 

,1 , , ,

1 1

1 1 1
( ) ( , , )

N N

i i i i j i N i j

j j

T T T
y V x E k k k k

N N N
(12)

where 1/ 2 1/ 2

1 1
( , , )

m m
E e e , m

i
y R

Hence, the corresponding
b

S ,
w

S ,
t

S in
m

R can be directly 

calculated in the projective space
m

R of (0)tS , since m  is far less 

than
'

N . As a result, the criterion function ( )J w in (5) can be 

rewritten in the projective space
m

R :

( )

T

b

T

w

Y S
J Y

Y S

Y

Y
       or ( )

T

b

T

t

S
J Y

S

Y Y

Y Y
                  (13) 

It is easy to be seen that
b

S ,
w

S is semi-positive definite and 
t

S is

positive definite. In fact, the former one is equivalent to the 

latter one in (13)[8]. Then, we will carry out OFLD [11] 

algorithm to calculate the optimal discriminant vectors with 

respect to Fisher criterion (13). The within-class matrix
w

S can be 

split into its null space
1

(0) { , , }
lwS span  and its 

orthogonal complement space 1(0) { , , }w l mS span ,

where
1
, ,

m
 are the orthonormal basis of

m
R . In fact, it can 

be verified that all discriminatory information with respect to 

Fisher criterion (13) is contained in these two subspaces [11]. It 

is clear that the within-class distance equals to zero in (0)wS ,

and the between-class distance equals to nonzero in (0)wS .

Hence, in (0)wS , the Fisher criterion (13) can be replaced 

by ˆ( ) T

bJ Y Y S Y . In order to calculate the optimal discriminant 

vectors in (0)wS , let
1

P
1

[ , , ]
l

and
1 1

T

b b
S P S P , calculate 

b
S ’s orthonormal eigenvectors

1
, ,

l
z z . It is easy to be seen 

that
1

( 1, , )
i

P z i l  can constitute all optimal discriminant 

vectors in (0)wS and
1

( 1, , )
i

VP z i l can constitute all optimal 

discriminant vectors in the intersection space ( (0) (0))w bS S . It 

is obviously that l must be 1c , since the dimensionality of the 

feature space F  is far higher than the number of the training 

samples [4]. From [4], in the space spanned by 

those 1c optimal discrminant vectors 
1

( 1, , )
i

VP z i l in F ,

the within-class distance of the training sample in F equals to 

zero, while the between-class distance of the training sample 

in F  does not equal to zero. In addition, for optimal 

discriminant vectors in the space (0)wS , let 

2 1
( , , )

l m
P and

2 2
ˆ T

b b
S P S P ,

2 2
ˆ T

t t
S P S P , calculate

'
l l

eigenvectors '1
, ,

l l
z z corresponding to the first

'
l l leading

eigenvalues of
1ˆ ˆ

tbS S . Then, 
'

2
( 1, , )

i
P z i l l constitute the 

optimal discriminant vectors in (0)wS and
'

2
( 1, , )

i
VP z i l l

constitute the remaining optimal discrminant vectors in F . It is 

clear that the
'

2
( 1, , )

i
P z i l l constitute the optimal 

discriminant vectors of (0) (0)b wS S . From the procedure above, 

we can see that
1

( 1, , )
i i

Y VP z i l ,
'

2
( 1, , )

i i
Y VP z i l l constitute all optimal discrminant 

vectors in F .

For input pattern x , its projection into the subspace spanned 

by '1
[ , , ]

l
Y Y , can be calculated by ( )

T
z x . By the 

kernel trick, this expression can be rewritten as follows: 

'1 1 1 2 1 2( , , , , , )T

l l l
z Pz Pz P z P z

1

1 1

1 1 1
( ( , ) ( , ), , ( , ) ( , ))

N N
T T

i N N

i i

E k x x k x x k x x k x x
N N N

(14)

where 1/ 2 1/ 2

1 1
( , , )

m m
E e e .

Thus, a low-dimensional representation ( )
T

z x with
enhanced discrminant power in F has been introduced. In 
addition, when ( )x x , some D-LDA-based algorithms [4,7] 
are also viewed as a special case of the proposed kernel 
algorithms. 

4. EXPERIMENTS 

In order to test the effectiveness of the proposed algorithm, we 
will apply it to face recognition, where the SSSP widely exists 
and the pattern distribution is generally nonlinear and complex. 
In the following experiments, we have used the UMIST database 
(images.ee.umist.ac.uk) [12], which is a multiview database and 
consists of 575 gray-scale images of 20 subjects, each covering a 
wide range of poses from profile to frontal views as well as face 
gender and appearance. All original images are resized into 
112X92 with 256-level gray scale. 

The first experiment will compare the feature distribution of 
this article algorithm with those of the D-LDA [3] and the 
KDDA [8]. And we only use a subset of the database, which 
contains 204 images of six randomly selected subjects (classes). 
Fig.1 depicts the first two most discriminant features extracted 
by the D-LDA, the KDDA and the novel algorithm, where a 
RBF kernel

2 2

1 2 1 2
( , ) exp( || || )k z z z z  with

2
1 7e is

used. It is clear that some classes are still non-separable in the 
D-LDA-based subspace while they can more linearly separable 
in the KDDA-based subspace. In addition, those features that 
belong to the same class will cluster into the same point in the 
novel algorithm-based subspace, since the within-class distance 
of those features equals to zero. Hence, it is clear that the feature 
distribution in the novel algorithm-based subspace is more 
linearly separable than that in the KDDA-based subspace. 

The following experiment will compare the novel algorithm 
with the KDDA [8] and the KFDA [9] in terms of the correct 
classification rates. The KDDA algorithm [8] can effectively 
compensate the limitation of the GDA [5] that the pseudoinverse 
matrix used in the GDA loses some significant discriminatory 
information, and the KFDA algorithm [9] that used the second 
method in Section 2 to solve the SSSP is more fit to the training 
set than the GDA [5] in many cases. In this experiment, we 
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Fig.1 Distribution of 204 samples of six classes in D-LDA-, 
KDDA- and the novel algorithm-based subspace. (a) for D-LDA; 
(b) for KDDA; (c) for the novel algorithm. 
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    (a)                                            (b) 
Fig.2. Comparison rates, where ‘:’: KDDA, ‘-.’: KFDA, ‘-’: the 
novel algorithm. (a): the recognition rates as functions of a ; (b): 
the recognition rates as functions of the number of feature 
vectors. 

randomly chose the 5 training images per person from the 
database, and a training set of 100 images and a test set of 
remaining 465 images are created for the following experiment. 
The nearest neighbor classifier is used for classification. We do 
each experiment on 10 times and the results reported in this 
paper are an average of them. 

Fig.2 depicts the recognition rates of those three methods 
when the polynomial kernel 

1 2 1 2
( ( , ) ( ( ) ) )

d
k z z a z z b  is 

used. As similar as the KDDA, for the sake of simplicity, we 
only discuss the influence of a , while 1b and 2d are fixed. 
Fig. 2(a) describes the recognition rates as functions of a within
the range from1 9e to1 7e on the optimal number of feature 
vectors, which can be found by searching the number of used 
feature vectors that leads to the highest summation of the 
recognition rate over the variation range of a . In addition, the 
optimal number of feature vectors in the novel algorithm is 
always more than 19, whereas the optimal number of feature 
vectors in the KDDA [8] and the KFDA [9] is often about 19. As 
a result, it can conclude that some discriminatory information 
can be contained in the space (0) (0)b wS S and it is often 
omitted in many traditional KFDA algorithms such as the 
KDDA [8] and the KFDA [9]. Fig.2 (b) describes the recognition 
rate curves as functions of the number of feature vectors within 
the range from 3 to 19, where the polynomial kernel 
with 1 19a e is used. According to Fig.2, we can see that the 
performance of the novel algorithm is overall superior to those 
of the other two algorithms, and it can effectively compensate 
the limitations and shortcomings of those algorithms. In addition, 
it is worthy to mention here that the computational requirements 
of the novel algorithm are tolerable to those of the KDDA 
algorithm and the KFDA algorithm. 

Other comparative experiments on the different kernel 
functions with the different parameters have also been carried 
out, and the comparative experiments of applying those 
algorithms to other popular databases (the ORL database. 
available: www.uk.research.att.com) have been carried out too. 
In addition, we compare this novel algorithm with the GDA 
method [5] and the KPCA method [10] too. All results show that 
this novel algorithm is very effective. However, we refer reader 
to those results duo to space limitations. 

5. CONCLUSIONS 

In this paper, we have developed a novel algorithm for the 
kernel nonlinear Fisher discriminant analysis. The proposed 
method combines kernel-based methodologies with optimal 
discriminant analysis techniques. This algorithm can effectively 
break the inherent limitations in the general earlier kernel 
discriminant analysis algorithms. This algorithm has so 
properties: in the space spanned by the first 1c optimal 
discriminant vectors in F , the within-class distance of the 
training samples in F equals to zero, while the between-class 
distance of the training samples in F does not equals to zero; in 
the space spanned by the remaining optimal discriminant vectors 
in F , some other discriminatory information in F can be 
obtained. We have applied this algorithm to the face recognition, 
and the experimental results tested on the different kernel 
function with the range parameter show that this algorithm is 
very effective. 
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