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ABSTRACT

This paper investigates the use of acoustic based features for
music information retrieval. Two specific problems are studied:
similarity search (searching for music sound files similar to a
given music sound file) and emotion detection (detection of emo-
tion in music sounds). The Daubechies Wavelet Coefficient His-
tograms (proposed by Li, Ogihara, and Li), which consist of mo-
ments of the coefficients calculated by applying the Db8 wavelet
filter, are combined with the timbral features extracted using the
MARSYAS system of Tzanetakis and Cook, to generate compact
music features. For similarity search, the distance between two
sound files is defined to be the Euclidean distance of their nor-
malized representations. Based on the distance measure the clos-
est sound files to an input sound file is obtained. Experiments on
Jazz vocal and Classical sound files achieve a very high level of
accuracy. Emotion detection is cast as a multiclass classification
problem, decomposed as a multiple binary classification problem,
and is resolved with the use of Support Vector Machines trained
on the extracted features. Our experiments on emotion detection
achieved reasonably accurate performance and provided some in-
sights on future work.

1. INTRODUCTION

Music is not only for entertainment or pleasure. Social and
psychological effects of music have been studied extensively for
decades. At the beginning of the 21st century the world is wit-
nessing ever-increasing growth of the on-line music. Efficient and
accurate automatic music information processing (in particular, ac-
cessing and retrieval) will be extremely important research issues
of this century. Traditionally musical information has been re-
trieved and/or classified based on standard reference information,
such as the name of the composer, the title of the work, the album
title, the style of music, and so on. These basic pieces of informa-
tion will remain essential, but information retrieval based purely
on these is far from satisfactory. In [1] Huron points out that since
the preeminent functions of music are social and psychological,
the most useful characterization would be based on four types of
information: the style, emotion, genre, and similarity

Of these four types, there has been a considerable amount
of work in extracting features for speech recognition and music-
speech discrimination, but much less work has been reported on
the development of descriptive features specifically for music sig-
nals. To the best of our knowledge, currently the most influential
approach to direct modeling of music signals for automatic genre
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classification is due to Tsanetakis and Cook [2], where the tim-
bral texture, rhythm, and pitch content features are explicitly de-
veloped. The accuracy of classification based on these features,
however, is only ��� on their ten-genre sound dataset. In [3] we
proposed a new feature extraction method based on wavelet co-
efficients histogram, DWCH. The DWCH features are computed
from histograms on Daubechies wavelet coefficients at different
frequency sub-bands with different resolutions and seem to repre-
sent both local and global information very well. In [3] it is shown
that the use of DWCH together with advanced machine learning
techniques, accuracy of music genre classification can be signifi-
cantly improved. On the ten-genre dataset of [2], the accuracy of
classification has been increased to almost ���. On genre specific
classification, i.e., distinguish one genre from the rest, the accu-
racy can be as high as ���. The paper [3] shows that the best
way of using DWCH is to combined it with the timbral features.
These results seem to suggest that genre classification can now be
efficiently done using such feature sets as DWCH and motivate us
to study the three remaining types of information as proposed by
Huron. Of the three, style can be thought as a problem residing
between similarity and genre, and thus, similarity and emotion are
the most urgent issues in music information retrieval.

The objective of similarity search is to find music sound files
similar to a given music sound file given as input. Music classifica-
tion based on genre and style is naturally the form of a hierarchy.
Similarity can be used to group sounds together at any node in
the hierarchies. The use of sound signals for similarity is justified
by an observation that audio signals (digital or analog) of music
belonging to the same genre share certain characteristics, because
they are composed of similar types of instruments, having similar
rhythmic patterns, and similar pitch distributions [4].

Relationship between musical sounds and their impact on the
emotion of the listeners has been well studied for decades. The
celebrated paper of Hevner [5] studied this relation through ex-
periments in which the listeners are asked to write adjectives that
came to their minds as the most descriptive of the music played.
The experiments substantiated a hypothesis that music inherently
carries emotional meaning. Hevner discovered the existence of
clusters of descriptive adjectives and laid them out (there were
eight of them) in a circle. She also discovered that the labeling
is consistent within a group having a similar cultural background.
The Hevner adjectives were refined and regrouped into ten adjec-
tive groups by Farnsworth [6]. Our goal is to use treat the emotion
detection problem as a multiclass classification problem.

The similarity search processes can be divided into feature ex-
traction and query processing while the process of emotion con-
tains feature extraction and multi-label classification. In the fea-
ture extraction step, we extract from the music signals information
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representing the music. The features extraction should be compre-
hensive (representing the music very well), compact (requiring a
small amount of storage), and effective (not requiring much com-
putation for extraction). To meet the first requirement the design
has to be made so that the both low-level and high-level infor-
mation of the music is included. In the second step, we build an
efficient mechanism (an algorithm and/or a mathematical model)
for processing the queries or classification based on the features.

2. RELATED WORK

The content-based acoustic features are classified into timbral tex-
ture features, rhythmic content features, and pitch content fea-
tures [2]. Timbral features are mostly originated from traditional
speech recognition techniques. They are usually calculated for ev-
ery short-time frame of sound based on the Short Time Fourier
Transform (STFT) [7]. Typical timbral features include Spectral
Centroid, Spectral Rolloff, Spectral Flux, Energy, Zero Crossings,
Linear Prediction Coefficients, and Mel-Frequency Cepstral Coef-
ficients (MFCCs) (see [7] for more detail). Among these timbral
features MFCCs have been dominantly used in speech recognition.
Logan [8] examines MFCCs for music modeling and music/speech
discrimination. Rhythmic content features contains information
about the regularity of the rhythm, the beat and tempo informa-
tion. Tempo and beat tracking from acoustic musical signals has
been explored in [9, 10]. Foote and Uchihashi [11] use the beat
spectrum to represent rhythm. Pitch content features deals with
the frequency information of the music bands and are obtained us-
ing various pitch detection techniques.

There has been much work on music style recognition, genre
categorization, and similarity. Dannenberg, Thom, and Wat-
son [12] demonstrate that machine learning can be used to build
effective style classifiers for interactive performance systems. Kuo
and Shan [13] present a personalized content-based music filtering
system to support music recommendation based on user’s prefer-
ence of melody style. Chai and Velcoe [14] use the Hidden Markov
Model to classify songs based on their monophonic melodies. As
to genre classification, Tsanetakis and Cook [2] propose a com-
prehensive set of features to directly model music signal and ex-
plored the use of those features for musical genre classification
using the K-Nearest Neighbor Model and the Gaussian Mixture
Model. Lambrou et al. [15] use statistical features in the tempo-
ral domain as well as three different wavelet transform domains to
classify music into rock, piano and jazz. Deshpande, Singh, and
Nam [16] use Gaussian Mixtures, Support vector machines and
Nearest Neighbors to classify the music into rock, piano and jazz
based on timbral features.

The problem of finding sound files similar to a given sound
files has been studied in the past [17, 18, 19, 20, 21]. Logan and
Salomon propose the use of MFCC to define similarity [18]. Nam
and Berger propose the use of timbral features (spectral centroids,
short-term energy function, and zero-crossing) for similarity test-
ing [17]. Cooper and Foote study the use of self-similarity to sum-
mary music signals [19]. Foote, Cooper, and Nam use this sum-
marization for retrieving music files [20]. Rauber, Pampalk, and
Merkl study a hierarchical approach in retrieving similar music
sounds [21].

While there has been much work on emotion recognition from
speech [22, 23], there has been little work on automatic music
emotion detection.

3. FEATURE EXTRACTION

Our extracted feature contains traditional sound features including
MFCC and other timbral features and DWCHs.

3.1. Mel-Frequency Cesptral Coefficients (MFCC)

MFCC is designed to capture short-term spectral-based features.
After taking the logarithm of the amplitude spectrum based on
short-term Fourier transform for each frame, the frequency bins
are grouped and smoothed according to Mel-frequency scaling,
which is design to agree with perception. MFCC features are gen-
erated by decorrelating the Mel-spectral vectors using discrete co-
sine transform.

3.2. Other Timbral Features

Spectral Centroid is the centroid of the magnitude spectrum of
short-term Fourier transform and is a measure of spectral bright-
ness. Spectral Rolloff is the frequency below which ��� of the
magnitude distribution is concentrated. It measures the spectral
shape. Spectral Flux is the squared difference between the normal-
ized magnitudes of successive spectral distributions. It measures
the amount of local spectral change. Zero Crossings is the number
of time domain zero crossings of the signal. It measures noisi-
ness of the signal. Low Energy is the percentage of frames that
have energy less than the average energy over the whole signal. It
measures amplitude distribution of the signal.

3.3. DWCH

There are many kinds of wavelet filters, including Daubechies
wavelet filter, Gabor filter etc. Daubechies wavelet filters are the
one commonly in image retrieval (more details on wavelet filter
can be found in [24]. In our work, we use Daubechies wavelet filter
Db8 with seven levels of decomposition. After the decomposition,
we construct the histogram of the wavelet coefficients at each sub-
band. The coefficient histogram provides a good approximation of
the waveform variations at each subband. From probability theory,
a probability distribution is uniquely characterized by its moments.
Hence, if we interpret the waveform distribution as a probability
distribution, then it can be characterized by its moments. To char-
acterize the waveform distribution, the first three moments of a
histogram is used [25]. The first three moments are the average,
the variance and the skewness of each subband. In addition, we
also compute the subband energy, defined as the mean of the abso-
lute value of coefficients, for each subband. In addition, our final
DWCH feature set also includes the tradition timbral features for
speech recognition.

Our DWCH feature set contains four features for each of seven
frequency subbands along with nineteen traditional timbral fea-
tures. However, we found that not all the frequency subbands are
informative and we only use four subbands. The total number of
features is 35. More details can be found in [3].

4. SIMILARITY SEARCH

4.1. Method Description

After feature extraction, we represent each music track �� by a
35-dimension vector �� � ����� � � � � �����. We normalize each
dimension of the vector by subtracting the mean of that dimension
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across all the tracks and then dividing the standard deviation. The
normalized 35-dimensional representation vector is

��� � ������ � � � � �������

where ���� �
������������ �

��������
� � � � � ��. After normalization,

we compute the Euclidean distance between the normalized repre-
sentation and the distance serve as similarity (in fact, dissimilarity)
measure for our purpose. We then return the tracks with shortest
distances to the given query as our similarity search result.

4.2. Experiments

4.2.1. Jazz Vocal Music

We created a collection of 250 Jazz vocal sounds files, covering 18
vocalists and 35 albums. For each music file, its first 30 seconds of
the music were profiled into features using the approach described
earlier.

Next, 60 tracks were selected from the collection as queries.
For each query the nine closest matches were found, which were
ranked in the increasing order of their Euclidean distance to the
input sounds. Of the 60, 28 queries (46.7%) had a track from the
same album as the closest match, 38 queries (63.3%) had at least
one track from the same album in the top three matches, and 54
queries (90.0%) had at least one track from the same album in the
top nine.

For each of the 22 queries for which the system selected no
tracks belonging to the same album, at least one of the top three
choices had sounds very close to the query. For example, the sys-
tem selected a segment from a ballad with a low-range female
voice (S. Vaughan) accompanied by a piano trio as the most similar
to a ballad with a low-range male voice (J. Hartman) accompanied
by a piano trio; the system found the husky voice of B. Dearie to
be similar to the husky voice of K. Krog.

4.2.2. Classical Music

We created a collection of 288 Classical sound files, covering 72
albums (15 orchestral, 10 chamber, six songs and lieder, ten instru-
mental, ten string solo and ensemble, seven choral, six opera, and
eight concerto albums). We selected a track from each album to
obtain a list of nine closest sound files in the entire collection. For
33 queries (45.3%) the top two selections contained a track from
the same album, for 29 of the remaining 39 (41.3% of the total),
at least three out of top five were of the same format and from the
same period (one of baroque, classical–romantic, and contempo-
rary). Thus, for a total of 62 out of 72 (86%), the tracks identified
were highly satisfactory.

5. EMOTION DETECTION

We cast the emotion detection problem as a multi-label classifica-
tion problem, where the music sounds are classified into multiple
classes simultaneously. That is a single music sound may be char-
acterized by more than one label, e.g. both “dreamy” and “cheer-
ful.”

5.1. The Multi-label Classification Method

We resort to the scarcity of literature in multi-label classification
by decomposing the problem into a set of binary classification

problems. In this approach, for each binary problem a classifier
is developed using the projection of the training data to the binary
problem. To determine labels of a test data, the binary classifiers
thus develop are run individually on the data and every label for
which the output of the classifier exceeds a predetermined thresh-
old is selected as a label of the data. See [26] for similar treatments
in the text classification domain.

To build classifiers we used Support Vector Machines [27]
(SVM for short) Based on the theory of structural risk minimiza-
tion, SVMs are designed to learn a decision boundary between
two classes by mapping the training examples onto a higher di-
mensional space and then determining the optimal separating hy-
perplanes between that space. SVMs have shown superb perfor-
mance on binary classification tasks and has been widely used in
many applications. Our SVM implementation is based on the LIB-
SVM [28], a library for support vector classification and regres-
sion.

5.2. The Dataset and Emotional Labeling

A collection of 235 Jazz sound files was created from 80 Jazz
instrumental albums as follows: From each album the first four
tracks were chosen (some albums had less than three music tracks
in the first four). Then from each music track the sound signals
over a period of 30 seconds after the initial 30 seconds were ex-
tracted in MP3.

The files were labeled independently by two subjects: a 39
year old male (subject 1) and a 25 year old male (subject 2). Each
track was labeled using a scale ranging from �� to �� on each
of three bipolar adjective pairs: (Cheerful, Depressing), (Relax-
ing, Exciting), and (Comforting, Disturbing), where 	 is thought
of as neutral. Our early work on emotion labeling [29] used bi-
nary label (existence versus non-existence) based on the ten adjec-
tive groups of Farnsworth. The classification accuracy was not
impressive was not very high (around 60%). This low perfor-
mance may be due to the fact that there were so many labels to
choose from. The recent experiments conducted by Moleants and
his group [30] using scales on ten bipolar adjective pairs produced
suggest that variations in emotional labeling can be approximated
using only spanned three major principal components, which are
hard to name. With these results in mind we decided to generate
three bipolar adjective pairs based on the eight adjective groups of
Hevner.

5.3. Experiments

The accuracy of the performance is presented in Table 1. Here the
accuracy measure is the Hamming accuracy, that is, the ratio of the
number of True Positives and True Negative against the total num-
ber of inputs. In each measure, the tracks labeled 	 are altogether
put on either the positive side or the negative side. It is clear that
the accuracy of detection was always at least 70% and sometimes
more than 80%. Also, there is a large gap in the performance be-
tween the two subjects on the first two measures. We observe that
this difference is coming from the difference in the cultural back-
ground of the subjects. To deal with labeling of a much larger
group of listeners one should cluster them into groups depending
on their labeling and train the emotion detection system for each
group.
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Accuracy Cheerful Relaxing Comforting
Subject 1 0.833 (0.080) 0.704 (0.099) 0.724 (0.051)
Subject 2 0.696 (0.100) 0.837 (0.073) 0.709 (0.091)

Table 1. Experimental Results. The quantity within the parenthe-
ses is the standard deviation of the corresponding labeling.

6. CONCLUSIONS

This paper studied the problem of finding similar music sound files
and detecting emotions based on the acoustic features calculated
from 30 seconds of music signals using FFT and Wavelet trans-
forms. For similarity search, the preliminary experiments con-
ducted on Jazz vocal tracks and on classical tracks achieved more
than 86% of perceived accuracy, in the sense that tracks sound-
ing very similar to listeners are found. For emotion detection, our
experiments show that emotion detection is harder than similarity,
the accuracy values ranging between 70% and 83%. Our future
goals are: to carefully create a data collection, to include emo-
tional contents and lyrics in similarity search, and to mix these
pieces of information to obtain better accuracy.
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