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ABSTRACT

In this paper, we propose a technique, based on a fuzzy Hid-

den Markov Chain (HMC) model, for the unsupervised seg-

mentation of images. The main contribution of this work

is to simultaneously use Dirac and Lebesgue measures at

the class chain level. This model allows the coexistence

of hard and fuzzy pixels in the same picture. In this way,

the fuzzy approach enriches the classical model by adding a

fuzzy class, which has several interpretations in signal pro-

cessing. One such interpretation in image segmentation is

the simultaneous appearance of several thematic classes on

the same pixel (mixture). Model parameter estimation is

performed through an extension of the Iterative Conditional

Estimation (ICE) algorithm to take into account the fuzzy

part. The fuzzy segmentation of a real image of clouds is

studied and compared to the classification obtained with a

“classical” hard HMC model.

1. INTRODUCTION

This work addresses fuzzy statistical unsupervised image

segmentation. Image segmentation is one of the major prob-

lem in image processing. The aim is to try to restitute the

ground truth image (x) from a noisy observation (y). To

that goal, the HMC model has been used successfully [1],

thanks to the use of a Hilbert-Peano scan that converts the

2D grid into a 1D sequence [2]. The success of HMC mod-

els is due to the fact that when the unobservable process

X can be modelled by a finite Markov chain and when the

noise is not too complex, then X can be recovered from the

observed process Y using different Bayesian classification

techniques like Maximum A Posteriori (MAP), or Maximal

Posterior Mode (MPM).

Nevertheless, it is sometimes interesting to take into ac-

count, not only the uncertainty of the noisy observation,

but also the imprecision of this observation. To this aim,

fuzzy Markov chains and fuzzy HMC have recently been

studied respectively in [3] and in [4]. However, by adding

a fuzzy class in a statistical model, we obtain an original

modelling, different from both probabilistic and fuzzy mod-

ellings. Indeed, it preserves the propriety (measure of un-

certainty) and robustness of the statistical segmentation and

enriches it with the fuzzy characteristic (measure of impre-

cision). This has already been done in unsupervised image

segmentation in two different estimation contexts: blind and

contextual in [5], and hidden Markov random field (HMRF)

in [6]. Fuzzy HMRF have also been used to model the so-

called partial volume effect encountered in medical images

context [7]. In this work, we propose to adapt this point of

view to the HMC context.

The paper is organized as follows: HMC structure is

briefly recalled in Section 2. We specify in Section 3 the

fuzzy HMC model used for image segmentation. The un-

known parameters estimation, achieved with an extension

of the ICE method [5]to the context considered here, is then

briefly presented. Comparative results on a real image are

presented in Section 5, whereas conclusions and perspec-

tives are drawn in Section 6.

2. HMC MODEL

For notational brevity, X1→n will denote the sequence of

random variables {X1, . . . , Xn} and x a realization of pro-

cess X .

2.1. Markov chain model

The sequence X = {Xn}n∈{1,...,N} is a finite Markov

chain of order one, with length N , if and only if:

P (Xn = xn | X1→n−1 = x1→n−1)
= P (Xn = xn | Xn−1 = xn−1) , (1)

with each Xn taking its value in the set of classes Ω =
{0, . . . ,K − 1}.

We only consider here the homogeneous Markov chain,

in which Eq. (1) does not depend on the position n in the
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sequence. The set of state transition probabilities matrix

T =
{
txn−1,n

}
is defined by:

tj,i = P (Xn = i | Xn−1 = j) ,

∀ i,j ∈Ω and ∀ n ∈ {2, ..., N} with the state transition coef-

ficients having the properties: tj,i ≥ 0 and
∑K−1

i=0 tj,i = 1.

The initial state probabilities are defined by:

πi = P (X1 = i) ,∀i ∈ Ω.

2.2. Hidden Markov chain model

Usually, HMC based image segmentation methods consider

the two following assumptions: H1: the random variables

Y1, . . . , YN are independent conditionally on X and H2:

the distribution of each Yn conditionally on X is equal to

its distribution conditionally on Xn.

Let X = X1→N be an homogeneous Markov chain,

corresponding to the unknown class image.

We get P (X = x) = πx1

∏N
n=2 txn−1,xn

.

Assuming that distributions of (Xn, Yn) are indepen-

dent of n, each state xn of the state space is associated with

a distribution, characterizing the repartition of observations:

fxn
(yn) = P (Yn = yn | Xn = xn) . (2)

Given an observed sequence y = y1→N , we can com-

pute the joint state-observation probability by:

P (X = x,Y = y) = πx1fx1(y1)
N∏

n=2

txn−1,xn
fxn

(yn).

In unsupervised classification, the distribution

P (X = x,Y = y) is unknown and must first be estimated

in order to apply a Bayesian classification technique. There-

fore the following sets of parameters need to be estimated:

1. The set Γ characterizing the homogeneous Markov

chain, i.e. the initial probability vector π = (πi)∀i∈Ω

and the transition matrix T .

2. The set ∆ characterizing the K pdf presented in Eq. (2).

In the Gaussian case, ∆ is composed of the means

and the variances.

3. NEW FUZZY HMC MODEL

Let us consider the problem of segmenting a satellite image

into two classes: “land” and “sea”. There obviously may

be some pixels with only “land” and others with only “sea”,

but there may also exist many pixels, as over the coast, in

which “land” and “sea” are simultaneously present. Thus

we have two hard classes, say 0 for “land” and 1 for “sea”,

and a fuzzy one. Let specify this fuzzy class by ε ∈]0, 1[,
which can be seen as the proportion of the area of class 1

(“sea”) in the considered pixel, the quantity 1 − ε conse-

quently represents the proportion of “land” in this pixel.

Let us consider the two classes case Ω = {0, 1}, called

“hard” in what follows.

3.1. Fuzzy Markov chain representation

As detailed in [5, 6], a simple way to introduce a fuzzy class

in such a statistical model is to consider that Xn does not

take its value in the set {0, 1} anymore, but in the contin-

uous interval [0, 1]. The new representation of Xn is then

Xn = εn, with:

• εn = 0 if the pixel is from class “0”,

• εn = 1 if the pixel is from class “1”,

• εn ∈]0, 1[ if the pixel is a fuzzy one.

3.2. Fuzzy Markov chain probabilities

The statistical approach requires a definition of a priori prob-

ability defined on Ω = {0, 1}.

As stated previously, each componentXn contains two

types of components: two hard (discrete) components and

a (continuous) fuzzy one. Let δ0, δ1 be Dirac weights on

0 and 1 and µ the Lebesgue measure on ]0, 1[. By taking

ν = δ0 + δ1 + µ as a measure on [0, 1], the distribution of

Xn can be defined by a density h on [0, 1] with respect to ν.

If we assume that X is homogeneous and the distribu-

tion of each Xn is uniform on the fuzzy class, P (Xn = εn)
can be written:

h(0) = P (Xn = 0) = π0,

h(1) = P (Xn = 1) = π1,

h(εn) = P (Xn = εn) = 1 − π0 − π1,∀εn ∈]0, 1[.

Let now detail the expression of the transition probabil-
ities of the Markov chain:

P (Xn = εn | Xn−1 = εn−1) = P (Xn = 0 | εn−1) δ0(εn)

+P (Xn = εn | εn−1) 1]0,1[(εn) + P (Xn = 1 | εn−1) δ1(εn).

4. PARAMETERS ESTIMATION

In order to apply some Bayesian criterion, we need to define

X | Y . We again consider assumptions H1 and H2.

4.1. ICE procedure principle

For the estimation of the parameters in Θ = {Γ,∆}, we

propose to use an adaptation of the general ICE algorithm [5],

which can be seen as an alternative to well-known Estimation-

Maximization (EM) algorithm. In fact, ICE does not refer
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to the likelihood, a notion which is difficult to handle in the

context of our study, but it is based on the conditional ex-

pectation of some estimators from the complete data (x,y).
It is an iterative method which produces a sequence of esti-

mations θq of parameter θ as follows: (1) initialize θ0, (2)

compute θq+1 = Eq[ θ̂(X,Y )
∣∣∣ Y = y], where θ̂(X,Y )

is an estimator of θ. In practice, we stop the algorithm at

iteration Q if θQ−1 ≈ θQ. This procedure leads to two dif-

ferent situations detailed in the next subsections.

4.2. Estimation of parameters in Γ

As in the classical case, parameters in Γ can be calculated

analytically by using the normalized Baum-Welch algorithm.

In this new context, the forward and backward probabilities

can be defined by:

αn+1(ξ) ∝
∫

]0,1[

αn(ξ) tζ,ξ fξ(yn+1) dζ, (3)

βn(ξ) ∝
∫

]0,1[

βn+1(ζ) tξ,ζ fζ(yn+1) dζ.

These integrals can not be solved analytically. A nu-

merical integration must be performed; the interval ]0, 1[
can be partitioned into a given number of sub-intervals. We

though obtained F “discrete fuzzy” classes, whose fuzzy

value corresponds to the medium value of the considered

sub-interval. The bigger F is, the closer it is from Eq. (3),

which implies bigger computation time (see discussion in

Section 5).

4.3. Estimation of parameters in ∆

The set ∆ has to be estimated in this new context.

Denoting by N (m,σ2) the normal distribution with mean

m and variance σ2, the pdf can then be expressed by:

εn = 0 : N (m0, σ
2
0),

εn = 1 : N (m1, σ
2
1),

εn ∈]0, 1[: N
(

(1 − εn)m0 + εnm1,
(1 − εn)2σ2

0 + ε2
nσ2

1

)
.

For the parameters ∆= {m0,m1, σ0, σ1}, θq+1 are not

tractable. However, they can be estimated by computing the

empirical mean of several estimates according to θq+1 =
1
L

∑L
l=1 θ̂(xl,y), where xl is an a posteriori realization

of X conditionally on Y . It can be shown that X | Y is

a non homogeneous Markov chain whose parameters can

be computed with the forward and backward probabilities

in Eq. (3). Accordingly, the parameters of the fuzzy class

can then be estimated.

Due to the numerical approximation, the fuzzy HMC

model with two hard classes tends to be a HMC with more

Fig. 1. Excerpt of a Space Shuttle Sensor photograph

(432 × 208), acquired in February 2nd 1984, near the

Parana River in Southern Brazil.

(a) Classical HMC (b) Fuzzy HMC (F = 1)

Fig. 2. Segmentations obtained with the classical HMC

model and the new fuzzy HMC one (F = 1 fuzzy class).

classes (F + 2), but with the parameters of those pdf de-

pending only on the two hard classes.

5. SEGMENTATION

The new fuzzy HMC model has been tested on the clouds

image in Fig. 1. This image is undoubtedly well suited to

the fuzzy model presented here since the sky and the opaque

cloud can be considered as hard classes, whereas the spots

where the sky can be seen through clouds can be consid-

ered as the fuzzy class. It should be noted that the 2-classes

segmentation task is really not obvious even for a human

observer.

Both HMC and fuzzy HMC models parameters have

been estimated with one hundred of ICE iterations. The im-

age classification was performed with respect to the fuzzy

MPM classifier, detailed in [6].

Fig. 2-(a) presents the segmentation obtained with a 3-

classes classical HMC model. We can first see that the

global shape of the cloud is not precisely segmented and

is quite rough. Furthermore, we can constat that the hard

class, corresponding to the opaque zone of the cloud, is also

not precisely detected. Fig. 2-(b) shows the segmentation

result obtained with the fuzzy HMC model and one fuzzy

“discrete” class (F = 1, ε = 0.5 on ]0, 1[). As we can first

observe, the global shape of the cloud seems to be much

more accurate. Furthermore, the hard class, corresponding

to the opaque zone of the cloud, seems to be in respect with

the real one. The resulting image confirms the interest of
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(a) F = 2 (b) F = 3

(c) F = 4 (d) F = 5

Fig. 3. Segmentations obtained with the new fuzzy HMC

model for different numbers of fuzzy classes F .

F fuzzy classes 0 1 2 3 4 5
Time (sec.) 41 72 114 178 250 327

Table 1. Computation time for different numbers of fuzzy

classes F .

the fuzzy HMC model.

Fig. 3 presents segmentation results for different num-

ber of “discrete” fuzzy classes F . It implies different values

of fuzzy measure, i.e. different values of ε, and so different

corresponding fuzzy classes. For example, F = 2 implies

ε ∈ {0.25, 0.75}, F = 3 implies ε ∈ {0.165, 0.495, 0.825},

. . .

We can observe that bigger is the number of “discrete”

fuzzy classes F , more accurate is the fuzzy segmentation.

Each fuzzy class can be interpreted as the measure of impre-

cision between “sky” and “cloud” on the considered pixel.

For example, the fuzzy class corresponding to ε = 0.1 is

very close to the hard class 0, and could be considered as

so. In this work, we are not concerned by the choice of a

threshold or others hardening methods. Indeed, fuzzy HMC

model seems to be useful in situation where the aim is to

detect and characterize mixed areas.

Due to numerical approximations, the computational com-

plexity involved in the model is quite lower than the one

involved in the classical HMC. Table 1 presents the com-

putational time according to the number of fuzzy classes F
(50 ICE iterations), for the presented results.

Let us specify one possible application of such segmen-

tation of clouds. An important problem in meteorology is to

automatically classify clouds. One could imagine that dif-

ferent kinds of clouds would be characterized by different

parameters. As the parameter estimation is automated, it

becomes possible to perform an automated classification of

clouds from the estimates so obtained.

6. CONCLUSION

In this work, we described a new fuzzy HMC model, with

application to unsupervised image segmentation. The main

contribution of this work is the simultaneous use of fuzzy

and statistical methods in a HMC model and the use of the

fuzzy extension of the Baum-Welch probabilities for param-

eters estimation.

Experiments on a real image confirm the interest of the

fuzzy classification, which seems to be very performing in

situation where the aim is to detect and characterize mixed

area. As it has been explained in this work, fuzzy and hard

segmentations are not competing but correspond to two dif-

ferent situations. This new fuzzy HMC model is able to

cope with fuzzy situations, where the classical HMC failed.

From this work, we plan to study others densities h than

the uniform one and try to apply this new model to synthetic

aperture radar images. The extension of the model to K
hard classes could also be of interest.
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