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ABSTRACT

A radial basis function (RBF) equalizer is introduced for
mitigation of intersymbol interference in optical communi-
cations systems. It is shown that prior information on the
noise and channel characteristics can be effectively incor-
porated into the structure of an RBF equalizer. A training
algorithm for tracking time varying statistics of the input
is presented and the proposed equalizer is applied for mit-
igation of polarization mode dispersion in optical commu-
nications channel with dominating amplified spontaneous
emission noise.

1. INTRODUCTION

Nonlinear channel equalization has become the subject of
research interest during the past few years. The application
of neural network techniques has resulted in considerable
advancement. Multilayer perceptron (MLP) and radial ba-
sis function (RBF) equalizers have shown significant per-
formance gain over conventional transversal and decision
feedback equalizers in nonlinear channel equalization due
to their nonlinear structures [1, 2, 3]. The price paid for the
performance improvement, however, is an increase in com-
plexity and long training time, which are the major limiting
factors of applications of neural networks for high speed
transmission systems.

The complexity of RBF equalizer can be substantially
reduced by incorporating prior information about channel
characteristics. RBF equalizer is a linear combination of
basis functions. This structure is closely connected with
the Bayesian method [4], which is the optimal solution that
achieves the minimum decision error probability. The close
relationship with Bayesian approach provides valuable in-
sights on how to design the RBF equalizer by taking into
account the physical properties of transmission channels.

In this paper, a radial basis function (RBF) equalizer is
presented to mitigate polarization mode dispersion (PMD)
for optical fiber communications systems. The proposed
equalizer can effectively adapt to the characteristics of the
optical channel, which is nonlinear, time-varying and cor-
rupted by non-Gaussian and signal dependent noises. we
derive a recursive learning algorithm to track channel changes
and design the RBF equalizer by incorporating the prior in-
formation about the channel distortion. Simulation results
are presented to demonstrate its successful application.

2. OPTICAL COMMUNICATIONS CHANNEL

The optical fiber communications channel is a time vary-
ing nonlinear system. Polarization mode dispersion (PMD),
the primary source of inter-symbol (ISI), is well known to
severely impair the signal quality in high bit rate long haul
optical fiber communications systems. PMD is caused when
the light polarized in one axis travels faster than light polar-
ized in the orthogonal axis because of the birefringence of
optical fiber. The gap between the arrival times of the two
components, defined as the differential group delay (DGD),� , leads to signal pulse broadening, hence ISI. PMD can
be characterized by the polarization dispersion vector,

�
,

whose direction determines the two principle states of polar-
ization and whose magnitude is equal to � [5]. The birefrin-
gence of optical fiber results from intrinsic factors, such as
geometric irregularities of the fiber core or internal stresses,
or external factors, such as bending, twisting and environ-
ment temperature changing. Since all these mechanisms ex-
ist to some extent in any field-installed fiber, birefringence
varies randomly along its length, which leads to time vary-
ing optical channels.

The first order PMD effect can be characterized by the
channel response� � � � 
 � � � � � � � � � � � � � � � � �

(1)

where
�

is the power splitting factor representing the ratio
of signal strengths in the two principal states of polariza-
tion, which is uniformly distributed in � � � � �

. The effect of
high order PMD, which dominates for large DGD values, is
frequency dependent, hence cannot be modeled as a linear
system as in Eq. (1). Even for the first order PMD, however,
the linearity of the channel is destroyed by the existence of
the photodetector in the receiver, which can be modeled as
a square law device, that converts optical signal power to
electric current.

In optical fiber transmission systems with optical ampli-
fiers, the amplified spontaneous emission (ASE) is the dom-
inant source of noises that leads to asymmetric distributions
of marks and spaces after passing through the photodetec-
tor. The probability density function of the detected signal 

is a function of energy ! of the transmitted signal and the
power spectral density " $ of the ASE noise. The received
marks and spaces have different pdfs that are approximated
as in [6], reproduced as follows,
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where
� � � � � � �

is the number of modes per polariza-
tion state in the received optical spectrum,

� � and
� �

are
the optical bandwidth and the electrical bandwidth of the
system at the detector, respectively, and

� 

denotes the � th

modified Bessel function of the first kind. The means and
variances of the received marks and spaces, � � ,  �� , � � and �

� , can be obtained from Eq. (2) and (3) as � � � � � � � � , �� � � � �
� � � � � � , � � � � � � ,  �

� � � � �
� . The two

terms of  �� are often referred to as “noise/noise beat” and
“signal/noise beat”, respectively. We can see that the marks
have a noncentral chi-square distribution, and the spaces
have a central chi-square distribution.

For the purpose of simplicity, however, Gaussian dis-
tributions with the same mean and variance are commonly
used as

� � � � � � �� � �  ��
 � � � � � � � � � � �

�  ��
�

(4)

� � � � � � �� � �  �
�

 � � � � � � � � � � �
�  �

�
� �

(5)

Note that
�

is a sum of
� �

independent random variables,
hence it is reasonable to assume Gaussian pdf from the cen-
tral limit theorem for large

�
.

3. CONSTRUCTION OF RBF EQUALIZER

Adaptive electrical equalization has shown to be an effective
technique to mitigate ISI due to PMD in optical communi-
cations systems [7, 8]. Most equalizers are based on Wiener
filters, which give the least mean-squared error (MSE) of
equalizer output. These equalizers assume a stationary lin-
ear channel model and achieve optimum only when signals
are corrupted by additive Gaussian noise [9]. As discussed
in the above section, all these assumptions do not hold in
the optical channel. In addition, Wiener filters are usually
trained by a supervised method, which implies that “desired
data” is required in the learning process. However, this is
not practical in optical communications systems due to the
nonzero mean “noise/noise beat” and signal dependent “sig-
nal/noise beat”. Without the exact knowledge of noises, one
can not determine what the “desired data” is. Also, the fact
that the transmitted sequence is drawn from a finite alpha-
bet, � 0,1 � , is not exploited in these equalizers. The RBF
equalizer, on the other hand, is advantageous with regards
to all the above mentioned points.

The output of the RBF network is a linear combination
of basis functions,

� � � � � �� � ! � # �
� & � � ) � & � � (6)

where
�

is the equalizer input and also the channel output,) �
’s are the centers and * is the number of basis functions.

The structure of RBF network holds the exact frame for the
Bayesian approach, which is represented as

� � + - � � � / � 0�
1 � +

�
� � � - +

�
� � � +

�
�

/ �
�

1 � � � � - +
�

� � � +
�

� � (7)

where +
�
denotes the transmitted sequences, i.e., the chan-

nel input, of length � , +
�

� � 3 � � 3 � � � � � � 3 6 �
, 3 8 : �  � � � .

We can see that the basis function,

# �
, in Eq. (6) corre-

sponds to the normalized conditional distribution of channel
output, � � � - +

�
� � / �

�
1 � � � � - +

�
�
, in Eq. (7) since all the pos-

sible transmitted sequences are equally likely. The centers) �
’s are related to the noise-free channel outputs of differ-

ent transmitted sequences. The outer layer weight
! �

cor-
responds to the transmitted sequence +

�
. Once the parame-

ters of RBF equalizer are trained to play their corresponding
physical roles, we can expect that it achieves the minimum
decision error probability.
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Fig. 1. 3D constellation of PMD channel. The data is from
the simulation of a first order PMD channel with param-
eters given by: return-to-zero (RZ) Gaussian pulse, Peak
power=2mW, Bit duration=100ps, Full width at half maxi-
mum (FWHM)=50ps, DGD=50ps,

"
=0.5 and the signal to

noise ratio (SNR)=5.7dB.

Our goal is to construct the RBF equalizer to match the
optical communications channel. It can be seen in Fig. 1,
the channel outputs are almost fully separated in a 3D con-
stellation, which implies that ISI basically stays within 3
bits. This is true because the effect of PMD is negligible
beyond its adjacent bits. Hence the optimum choice for the
length of the equalizer input vector, � , is 3, and as a result,� = � ?

basis functions are needed for the RBF equalizer.
Note that the noise distribution at each cluster is differ-

ent due to the asymmetric pdfs of the output of optical chan-
nel, which suggests that multivariate Gaussian functions are
good candidates for the basis functions.

Hence we construct the RBF equalizer for optical PMD
channel as

� � � � � � � � � � 3 � � � � � - � � � � � � @� �
1 �

! � # �
� � � � � �

(8)

� @� �
1 �

! � B �
� � � � � �

/ @
�

1 � B �
� � � � � � � (9)

where
� � � � � � C � � � � C � � � � � � C � � � � � � F

, andB �
� � � � �� - G

�
-

 � �
� � �

� � � � ) �
� F G � ��

� � � ) �
� � � (10)

where G
�
is a I K I diagonal covariance matrix. Note that

a decision delay of 1 bit is introduced in Eq. (8) because
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all the PMD effect of the central bit, not the first one, is
contained in the three bits.

4. RBF NETWORK TRAINING

Generally, the training of RBF network consists of two stages.
In the first stage, the parameters governing the basis func-
tions are estimated. The second stage involves the learning
of weights of the output layer. There are different learning
strategies in the design of RBF network depending on how
the network is specified [10].

4.1. Learning algorithm

In this paper, we present an unsupervised recursive learning
strategy to estimate basis function parameters. Considering
the time varying property of the optical channel, the learn-
ing algorithm should be able to track varying channel re-
sponse, i.e., the estimation of basis function centers should
be updated with channel changes.

We derive our learning algorithm under the following
conditions:�

When channel is stationary, the estimation is unbi-
ased.�
When channel varies, the estimation is biased to the
most recent data.

We estimate mean and variance for each basis function based
on a data block with length

�
. When new equalizer input

enters the block, the statistics are updated and part of the
previous information is discarded.

The recursive learning algorithm is presented as follows:�� � � � � � �� � � � � � � � � � � � � � � � 
 (11)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � �

 (12)

where
� � � � � � �

,
� � � � � � 	 ��  � � � � � � �  � � � 	 � � , � � � 
 � 
 � � �

,

and the initial estimations are given by
�� � � � � �� � � � � � � � � �

and � � � � � � �� � � � � � � � � � � � � � �� � � � � �
. The proof is shown

in the appendix. The quantity
�

can be considered as the
forgetting factor. If channel varies rapidly, small

�
is pre-

ferred since the statistics “forget” faster; if channel changes
slowly, large

�
should be used since it can provide more

accurate estimations. Note that, when � gets large,
� � � �

converges to a constant, then Eq. (12) can be approximated
as

� � � � � � � � � � � � � � � �
� � �� � � � � � � � � � � �� � � � � � �

(13)

4.2. Training of basis functions

If the training sequence, 	 � � �
, is available, we can eas-

ily determine the cluster to which the current input vector,
 � � �
, belongs, thus update the corresponding center with

the learning algorithm described above. When

 � � �

corre-
sponds to the � -th basis function, then let


 �
� � � � 
 � � �

.
The � -th center is updated by� �

� �
 �
� � � �

(14)

where
�
 �

� � � � � ��
�  � 
 ��

�  � 
 ��
�  � �

with each component ob-
tained by Eq. (11).

As observed in Fig. 1, the variances of different basis
functions are highly related since they are all extended from
the same 1-D asymmetric Gaussian distributions. Hence in-
stead of

� � � variances, we only need two variances, as
in Eq. (4) and (5), based on which the covariance matrix for
each basis function can be constructed. For example, the co-
variance matrix of the basis function corresponding to input
vector 	

�
� � � � � �

is given by

�
�

�
! � �� � �

� � �
� �

� � � �� # �
(15)

Thus the number of free parameters that need to be esti-
mated is reduced, and so is the complexity of RBF network
training.

Note that the availability of training sequence is not manda-
tory since “desired outputs” are not required in our learning
algorithm. When transmitted signals can be detected with
low decision error probability, which is the case in optical
channel, we can use detected sequence for basis function
training.

4.3. Training of output layer weights

The weights of the output layer are usually trained by a
supervised process. Stochastic-gradient algorithm such as
Least mean square (LMS) are used in most applications as� �

� � � � � � � �
� � � � � % ' � � �

� �
� 
 � � � � 
 (16)

where � % is the step size, and the ' � � �
is the error of the

network output, ' � � � � ( � � � � � � 
 � � � �
, where

( � � �
is the

“desired” output.
However, considering the relationship with Bayesian model

as discussed section 3, we can avoid the weight training
process by simply assigning the corresponding transmitted
symbol to the weight of each basis function, i.e.,

� �
� �

�  � .
Here 	

�
� � �

�  � 
 �
�  � 
 �

�  � �
is the channel input vector that

corresponds the � -th basis function.
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Fig. 2. BERs of FFE and RBF equalizer.
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5. SIMULATION RESULTS

An all order PMD channel is simulated for transmission of
10Gbit/s RZ Gaussian pulses with 50 ps FWHM. The mean
DGD of the channel is 57 ps. We construct and train the
RBF equalizer by the methods described above. For the
purpose of comparison, a feed forward equalizer (FFE) of
length 5 is also implemented by using LMS algorithm [9].
We evaluate the performance of the equalizer by bit error
rate (BER) that it can achieve. The BERs are estimated
by counting the number of errors in the transmission of a
pseudo-random bit string of length 8, i.e., (11101000), for� � � � � times through the simulation system.

BERs of RBF equalizer and FFE under different noise
levels are shown in Fig. 2. We can see that obvious gain can
be obtained by the application of RBF equalizer over FFE.

6. CONCLUSION

An RBF equalizer is proposed for mitigation of PMD in-
duced ISI in optical communications systems. By incorpo-
rating prior information on the noise and channel charac-
teristics, the complexity of the RBF equalizer structure and
training process can be reduced without compromising its
performance. An unsupervised recursive learning algorithm
is presented for tracking time varying statistics of the chan-
nel. Simulation results verify the effectiveness of proposed
RBF equalizer.
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9. APPENDIX

Here we show that the recursive learning algorithm in Eq.
(11) and (12) satisfies the two conditions described in the
paper. From Eq. (11), we can obtain the direct form of

�� � � �
as

�� � � � � � � �� � � � � � � � � �
�� �

� �
� � 

�
� �

�
�

(17)

It is easy to see that the estimator for the mean value, Eq.
(11), is unbiased, and more weight is put on recent data. To
estimate variance, first, we need to evaluate the expectation
value of

� � � � � � �� � � � � �
. For simplicity, we derive from

� � � � � � � � � � �� � � � � � � � �
.

�� � � � � � � � � � � � � � � � �� � � � � � � � � � � �
(18)

thus

� � � �� � � � � � � � � � � � � � � � � � �
� � � �� � � � � � � � � � � � �

(19)

where � and � �
are the true values of mean and variance,

and

� � �� � � � � � � � � �
� � �� � � � � � � � � � � � � � � � � �� � � �

�� �
� �

� � 
�

� �
�

� �

� � � � � � �
� � �

�� �
� �

� � 
�

� �
�

� � � �
(20)

where

� � �� � � � � � � � � � � � � � � � �

� � �� � � �
�� �

� �
� � 

�
� �

�
� � � � � � �

� � � � �

� � �
�� �

� �
� � 

�
� �

�
� � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � 	

Hence,

� � � �� � � � � � � � � � � � � � � � � � �
�

� � �
� � � � � � � � � � � � � � � � �

(21)
then

� � � �� � � � � � � � � � � � � � �
�

� � �
� � � � � � � � �  � � � � � � �

(22)

Substituting Eq. (22) into Eq. (12), the recursive estimator
for variance is unbiased when

� � � � � � � �
� �

� � � � � � � � �  � � � � (23)

It is easy to show that
� � � � � � �

, which implies that more
weight is put on recent data.
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