
A MODULAR ARCHITECTURE FOR REAL–TIME FEATURE-BASED TRACKING

Benjamı́n Castañeda, Yuriy Luzanov and Juan C. Cockburn

Department of Computer Engineering
Kate Gleason College of Engineering

Rochester Institute of Technology
Rochester, New York

Email: {bxc0593 , yxl4459 , jcceec}@rit.edu

ABSTRACT

A modular architecture for real–time feature–based tracking
is presented. This architecture takes advantage of temporal and
spatial information contained in a video stream, combining ro-
bust classifiers with motion estimation to achieve real–time per-
formance. The relationship among features is exploited to obtain
a robust detection and a stable tracking. The effectiveness of this
architecture is demonstrated in a face tracking system using eyes
and lips as features. A pre-processing stage based on skin color
segmentation, density maps and low intensity characteristic of fa-
cial features reduces the number of image regions that are candi-
dates for eyes and lips. Support Vector Machines are then used in
the classification process, whereas a combination of Kalman filters
and template matching is used for tracking.

1. INTRODUCTION

One of the main capabilities of Smart Cameras is their ability of
adjusting their position in a purposive manner. For example a
smart room could have smart cameras in charge of tracking a per-
son (the user) so his/her gestures and movements are evaluated as
input commands. It is apparent that face tracking should be funda-
mental capability of the system, and since the interaction between
the room and the user is required, this should be accomplished in
real-time. There is a vast literature on face tracking and face de-
tection [1]. However, doing it in real-time is still a challenge.

An effective approach to face tracking combining appearance
based classifiers and motion estimators has been reported in [2, 3].
In these approaches either the face is detected as a whole or only
one feature (eyes) is used for tracking. Recent results reported in
[4] show that face detection with a component-based approach is
superior. Therefore, tracking using the combined information of
several facial features should improve the robustness of the algo-
rithm. This gave the inspiration for our modular feature-based ar-
chitecture for real–time visual tracking where we combine not only
spatial but temporal information from several features via data fu-
sion.

A flow diagram of this architecture is shown in Figure 1. It
consists of modules for feature extraction, tracking and data fu-
sion.

This modular architecture allows to use state-of-the art classi-
fiers to improve the robustness of detection and tracking. A few
years ago, achieving real-time performance with such a system

Sponsored by The Gleason Research Funding.

would have required the development of a custom designed chip
at a high cost. Moreover, it would have been impossible to keep
up with newer algorithms and techniques. However, technology
has progressed to the point where reconfigurable computing [5] is
a viable and cost effective alternative. The proposed architecture
has been designed to take advantage of this new technology.

The paper is organized as follows. Section 2 described the
proposed architecture. Then, sections 3 to 5 describe in detail
each stage of the feature extraction modules as applied to a face
tracking problem. Data fusion is described in section 6. Finally,
section 7 summarizes the contributions of the paper and indicates
future research directions.

2. FEATURE-BASED TRACKING ARCHITECTURE

The proposed architecture has been designed on the premise that
the particular object to be tracked has distinctive features (e.g.
eyes, lips, eyebrows in a face). A module, composed by pre-
processing, classification, motion estimation and verification stages,
is instantiated for each of the features to track (see Figure 1) and
it has two operational modes: Detection and Tracking. In detec-
tion mode, a classifier is used to obtain an initial position of the
feature of interest with high confidence. Since there is a trade-off
between confidence and computation time, a pre-processing stage
is needed to decrease the time spent in classification, reducing as
much as possible the number of candidates for the particular fea-
ture. It is important to note that the accuracy of the detection mode
is due to pre-processing as much as to the classifier.

In general, the detection mode cannot be used for every single
frame because the real-time constraint would be violated. Instead,
the module switches to tracking mode, where a motion estimator
is designed to track the feature detected by the classifier. After
instantiated with the initial position, the motion estimator will pre-
dict the position of the feature in the next frame and a verifier will
be used to corroborate its location.

Both modes of operation give as a result a list of vectors (fi,
si, xi) containing a candidate identifier (fi), a score indicating the
likeliness of the candidate to be the actual feature (si) and its posi-
tion (xi). The information, presented by each module, is combined
in the data fusion stage, which determines the final position of the
individual features. These feature positions are used to update the
motion estimators and verifiers from the different modules, and
also are used by a mode selector to switch any of the modules from
tracking to detection mode. This event is triggered periodically to
reset any tracking offset or to reacquire the feature when the track

V - 6850-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

Fig. 1. Tracking Architecture

is lost.

This architecture presents the advantage of using the temporal
information available in a video stream to reduce the computation-
ally expensive classification process. It can also take advantage of
data fusion algorithms to exploit the relationships among differ-
ent features to improve the overall (face) detection, tracking and
reacquisition. Its parallel design can take advantage of the paral-
lel processing capability of current multiprocessor computers and
reconfigurable devices. Depending on the task, it may be suffi-
cient to process only a subset of frames (frame drop) or use an “in-
terlacing” policy to process different features in different frames.
This architecture can be implemented with off-the-shelf compo-
nents allowing rapid and cost-effective prototyping. FPGA and
DSP boards configured to speed-up bottleneck processes, specially
the classification stage that tends to be computationally expensive.

The effectiveness of this architecture is demonstrated in an ex-
perimental face tracking system. Eyes and lips are the features
selected for face tracking. According to [6], hand motion can be
estimated at 15 frames per second, and since naturally hand motion
is faster than head movements, face motion can also be estimated
at this rate. Consequently, the interlaced approach will be used:
odd frames are evaluated by the lip tracking module while even
ones are evaluated by the eye tracking module. The experimental
setup is composed of the following hardware: a Dual Xeon Pro-
cessor 2.66 GHz, a pan/tilt/zoom VC-C4 Cannon Camera and an
Osprey 100 frame grabber.

3. PRE-PROCESSING

The pre-processing stage can be divided into two steps. The first
step uses a combination of skin color segmentation, density maps
and geometric filtering to extract face candidate regions from a
frame. The second step extracts the facial features candidates from
each face candidate region.

3.1. Skin Color Segmentation

Our approach to skin color segmentation is based on a skin color
distribution model. The most common way to represent a color
pixel is by encoding the red (R), green (G) and blue (B) values.
This color space is in general not suitable for computer vision ap-
plications since it correlates brightness (“intensity”) and chromi-
nance (“color”). Other color spaces such as HSV, YUV, YCrBr and
CIE Lab separate the chrominance information and often involve
nonlinear transformations from the RGB space. This additional
computation can not be afforded given the real–time constraint. To
address this issue, a skin model was developed based on a study of
skin color in the HSV colorspace. Then, to reduce the computation
time this model was mapped to a normalized rgb space which is
related to the RGB space by the following equations:

r = R/(R+G+B), g = G/(R+G+B), b = B/(R+G+B)
(1)

This normalization is equivalent to projecting one particular color
over the plane R + G + B = 1. Therefore, given the values of
r and g, b is fixed (b = 1 − r − g). The normalized color can
thus be represented by only r and g values. Finally, to increase
the execution speed, a look-up table (LUT) was used to encode the
skin color information. The current LUT has a size of (100x100).
This approach has a modularity advantage. The skin color model
can be developed in any other colorspace and then mapped back
into the r, g LUT.

3.2. Density Mapping and Region Filtering

After skin segmentation the image is converted to a density map
(down scaling) [7]. In this process, blocks of pixels are mapped to
a single pixel with value equal to the number of skin pixels in the
block.

This operation reduces the size of the image significantly (e.g.,
by 1/16 if 4x4 blocks are used) making it possible to eliminate spu-
rious skin color pixels (due to variations in lighting conditions and
other interferences) without compromising the real–time perfor-
mance of the system. Figure 3 shows an image and its density map
in the bottom left corner.

At this point thresholding followed by connected components
analysis (connectivity four) is applied to reduce the number of skin
regions. In our system blocks containing more than half skin color
pixels are kept. The resulting skin regions are further processed
using the following scale and biometric heuristics:

1. The aspect ratio of a region should be between 1 and 1.4.
2. The number of pixels in a region should be bigger than a

predefined minimum.
3. The ratio of region area to bounding box area should be

bigger than a prescribed minimum.
The regions that satisfy all these conditions become face candi-
dates to be analyzed further.

V - 686

➡ ➡

(a) Skin Mask (b) Extended Skin Mask, (c) Low intensity mask

Fig. 2. Facial Feature candidates

3.3. Feature Candidates Selection

A simple and effective way to identify face features is to analyze
the points considered non-skin inside a skin region [8]. One draw-
back of this approach is that illumination conditions can create
false non-skin candidates (e.g. light reflected in the forehead is
not considered skin). To solve this problem, the fact that facial
features have lower intensity than the rest of the face is used.

For each region considered a face candidate, an intensity mask
over the area of its bounding box is created by averaging every
4x4 block to match the size of the density map for the same region
(skin mask). The information of both masks is combined to ob-
tain possible facial features. As shown in Figure 2, the following
procedure is applied:

1. Histogram equalization of the intensity mask.
2. A threshold is applied to the equalized intensity mask. Ev-

erything below an intensity value of 51 is considered as low
intensity.

3. The skin mask is extended to fill the bounding box.
4. The extended skin mask is reversed to obtain non-skin “holes”

inside the face candidate region.
5. All points considered low intensity and non-skin are kept as

candidates for facial features to be analyzed by the classi-
fier.

Up to this point, a frame from the video stream has been analyzed
to obtain facial feature candidates in possible face regions. These
candidates will be classified in the next stage of the algorithm.

4. CLASSIFICATION

In this system Support Vector Machines (SVM) are used for fea-
ture detection. SVM have been applied successfully in face de-
tection [9, 2] and facial feature extraction [4]. They are based on
machine learning principles [10] and therefore must be trained. In
this section, the training process and the classification results are
presented.

Building a training set for a SVM is a very delicate and te-
dious task. It is important for the SVM to be trained with data as
close as possible to what they are going to classify. Two programs
were written to perform the training process. The first one follows
the algorithm described in the previous section. For each facial
feature candidate, a 10x20 image was extracted and classified by
a human operator. The second program was designed to guarantee
the integrity of the training and data sets; the already classified fea-

Fig. 3. Example of lip classification

tures grouped by class are shown to an operator who verifies the
classification. 13 subjects from different ethnicity went through
this process, in which they were asked to move while looking at a
video camera. Only small movements such as yaw, roll and pitch
of +/- 10 degrees were allowed. The training set contained 15308
images and the test set 5347 images of eyes, eyebrows, nostrils,
lips and hair. Two classifiers (for eyes and for lips) were trained
with the training set changing the positive samples according to
the class in turn. The SVM were trained using the Matlab toolbox
[11] which is based on Platt’s SMO Algorithm [12].

To choose the machine Kernel and the cost of misclassification
parameter (C), experiments were performed with linear, polyno-
mial and radial basis function (RBF) kernels using a smaller train-
ing set (5000 samples) and varying C from 0.01 to 100. The best
performance was obtained using a polynomial kernel of second
degree and C = 0.01.

The following table summarizes the performance of the clas-
sifier:

SV Accuracy Training Set Accuracy Test Set Min(ms) Max(ms) Avg(ms)
Eyes 2415 98.80% 91.10% 47 177 109.03
Lips 2261 98.65% 91.10% 37 209 77.3

Table 1. Performance and Accuracy of the SVM Classifiers

The above table shows robust results for the SVM classifica-
tion at the expense of real–time performance. Even if SVM are
only used for obtaining the initial position of a feature, the first
frame will have a significant delay. In Figure 3, an example of lip
detection is shown. The face region is highlighted by a bounding
box and the lips by square dots. The classifier generates a list of
candidate features, scores and positions that feed the data fusion
stage.

5. MOTION ESTIMATION AND VERIFICATION

A Kalman Filter was designed for motion estimation and was com-
bined with a template matching technique for verification purposes.
The parameters of the Kalman Filter are initialized following the
criteria described in [6].

The SVM classifier initializes the first measurement and the
first (10x20) template. In subsequent frames, the Kalman Filter
estimates the next position of the feature and this estimate is used
to define a search window for template matching. In its current
implementation this windows is defined as a neighborhood of 9x9
pixels around the estimated position. All the points evaluated are
presented to the Data Fusion stage (See Section 2). The Data

V - 687

➡ ➡

Fusion stage will return the candidate identifier recognized as the
feature of interest. Then its position is used to update the Kalman
Filter and update the template for the next evaluation.

Table 2 shows the performance of the detection and tracking
modes of the lips and eye modules independently without the Data
Fusion Stage. The performance is measured by the minimum,
maximum and average time for the module to process a frame.
Table 2 also shows the maximum and average number of frames
spent in the tracking mode of the module. These results indicate
clearly the advantage of switching to a tracking mode after a de-
tection step.

Min(ms) Max(ms) Avg(ms) Max # frames on track Avg # frames on track
Eyes 9 178 33.3 10 3
Lips 9 164 18 11 4

Table 2. Performance of SVM Classifier combined with Kalman
filter and template matching

6. DATA FUSION AND MODE SELECTOR

The Data Fusion stage combines the information from different
modules (e.g., eyes and lips) to give a better estimation of the face
position, in time and space, and help reacquiring lost features us-
ing geometric information about relative position between lips and
eyes. The data fusion stage performs the following tasks:

1. It decides with the combined information if one of the mod-
ules is out of track.

2. It returns to each module the identifier of the candidate to
be considered the feature of interest.

3. If both features are out of track, it first runs the lip classifier,
and in the next frame it combines this information with the
result of the eye classifier.

4. If one feature is out of track, it weights the result of the
classifier according to the euclidian distance to the region
where the feature is expected.

5. If one of the features has been on track for more than 11
consecutive frames, the classifier is called to evaluate the
next corresponding frame, and its result is weighted accord-
ing to the last position known from the motion estimator.

If the Data Fusion stage decides that one module is out of
track, it will alert the mode selector stage, which in turn will send
a message to the specific module to change to detection mode.

This stage is yet to be added to the current implementation of
face tracking. It is expected that it will improve the reacquisition
of lost features and the real–time performance of the system.

7. CONCLUSION AND FUTURE WORK

A modular feature–based tracking architecture suitable for real-
time visual tracking algorithms has been proposed and applied to
an experimental face tracking system. Two independent tracking
modules, one for eyes and one for lips, have been implemented
using SVM classifiers combined with Kalman Filters and template
matching. Experimental results demonstrate that a real–time per-
formance can be achieved. The SVM classifier proves to be effec-
tive. However, the number of support vectors for each classifier
is too large and may introduce a noticeable delay. This problem
can be alleviated by reducing the number of Support Vectors while
minimizing the degradation of the classifier [13, 9]. Furthermore,
the implementation of the data fusion stage is almost complete and
the results will be reported shortly.

8. REFERENCES

[1] D. J. Kriegman M. Yang and N. Ahuja, “Detecting faces in
images: A survey,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 24, no. 1, pp. 34–58, 2002.

[2] V. Kumar and T. Poggio, “Learning-based approach to re-
altime tracking analysis of faces,” Technical Report 1672 -
MIT, 1998.

[3] S. Spors and R. Rabenstein, “A real-time facetracker for
color video,” IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 3, pp. 1493–1496, 2001.

[4] J. Wu B. Heisele, P. Ho and T. Poggio, “Face recognition:
component-based versus global approaches,” Computer Vi-
sion and Image Understanding, vol. 91, pp. 6–21, 2003.

[5] K. Compton and S. Hauck, “Reconfigurable computing: A
survey of systems and software,” ACM Computing Surveys,
vol. 34, no. 2, pp. 171–210, June 2002.

[6] M. Kohler, “Using the kalman filter to track human interac-
tive motion - modelling and initialization of the kalman fitler
for translational motion,” Tech. Rep. 629, University of Dor-
mund, January 1997.

[7] V. Kravtchenko, “Tracking color objects in real time,” M.S.
thesis, The University of British Columbia, 1999.

[8] E. Saber and A. M. Tekalp, “Frontal-view face detection
and facial feature extraction using color, shape and symmetry
based cost-functions,” Pattern Recognition Letters, vol. 19,
no. 8, pp. 669–680, 1998.

[9] B. Scholkopf S. Romdhani, P. Torr and A. Blake, “Com-
putationally efficient face detection,” in 8th International
Conference on Computer Vision, 2001, vol. 2, pp. 695–700.

[10] V. Vapnik, The Nature of Statistical Learning Theory,
Springer, 1995.

[11] G. C. Cawley, “MATLAB support vector machine toolbox
(v0.50β) [http://theoval.sys.uea.ac.uk/˜gcc/svm/toolbox],”
University of East Anglia, School of Information Systems,
Norwich, Norfolk, U.K. NR4 7TJ, 2000.

[12] J. C. Platt, “Sequential minimal optimization: A fast al-
gorithm for training support vector machines,” Tech. Rep.
MSR-TR-98-14, Microsoft Research, 1998.

[13] C. J. C. Burges, “Simplified support vector decision rules,”
International Conference on Machine Learning, pp. 71–77,
1996.

V - 688

➡ ➠

