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ABSTRACT

In many biometric systems, the scores of multiple samples (e.g. ut-
terances) are averaged and the average score is compared against
a decision threshold for decision making. The average score, how-
ever, may not be optimal because the distribution of the scores
is ignored. To address this limitation, we have recently proposed
a fusion model that incorporates the score distribution by making
the fusion weights dependent on the dispersion between the frame-
based scores and the prior score statistics obtained from training
data. As the fusion weights are data-dependent, the positions of
scores in the score sequences become detrimental to the final fused
scores. In this paper, we propose to enhance the fusion model by
sorting the score sequences before fusion takes place. The fusion
model was evaluated on a speaker verification task where each
claimant utters two utterances in a verification session. Results
demonstrate that fusion of sorted scores has the effect of maxi-
mizing the dispersion between the client scores and the impostor
scores, making the verification process more reliable. Compared
with our previous work where no sorting is applied, the new ap-
proach reduces the equal error rate by 11%.

1. INTRODUCTION

Although decision fusion is mainly applied to combine the outputs
of modality-dependent classifiers (see [1] for a review), it can also
be applied to fuse the decisions or scores from a single modal-
ity. The idea is to consider the multiple samples extracted from a
single modality as independent but coming from the same source.
From the perspective of application, multi-sample fusion will not
impose any burden to users because a single, long sample (e.g.
an utterance or video shot) can always be divided into a number
of short samples. Typically, the scores from multiple samples are
averaged (e.g., [2]). However, this approach is equivalent to the
single-sample case because the fusion weights are equal. The ben-
efit of fusing multi-samples arises when the weights for individual
scores from multiple samples are different.

To overcome the limitation of the score averaging approach,
we have recently proposed a fusion model [3] in which the fu-
sion weights are dependent on the dispersion between the frame-
based verification scores and the prior score statistics obtained
from training data. While it was demonstrated that incorporating
the prior score information into the computation of fusion weights
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helps reduce the error rate, the approach simply fuses two indepen-
dent streams of scores in a score-by-score basis without consider-
ing the best combination of scores for fusion. In this paper, we
propose to sort the two streams of scores (one in ascending order
and another one in descending order) before fusion takes place so
that large scores will always be fused with small scores. The pro-
posed score sorting approach is applied to a speaker verification
task involving 150 speakers using 10 different handsets. It was
found that multi-sample fusion with the sorting of score sequences
can reduce the equal error rate significantly.

The remainder of the paper is organized as follows. The data-
dependent decision fusion for multi-sample speaker verification
proposed in [3] is briefly reviewed in Section 2. This is followed
by an explanation of the proposed score sorting approach in Sec-
tion 3, where the benefit of fusing the sorted scores is demon-
strated through a Gaussian example. The proposed method is fur-
ther evaluated in Section 4 via a speaker verification experiment
using GSM-transcoded speech. Finally, in Section 5, concluding
remarks are provided.

2. MULTI-SAMPLE DECISION FUSION

Assume that K streams of speech vectors (e.g. MFCCs) can be
extracted from K utterances U = {U1, . . . ,UK}. Let us denote
the observation sequence corresponding to utterance Uk by

O(k) = {o(k)
t ∈ �D; t = 1, . . . , Tk} k = 1, . . . , K (1)

where D and Tk are respectively the dimensionality of o
(k)
t and

the number of observations in O(k), and t is the frame index. To
simplify notation, let us assume that the K utterances contain the
same number of feature vectors, i.e., T1 = T2 = · · · = TK . If it
is not the case, we may append the tail of the longer utterances to
the shorter ones to make the number of feature vectors equal.1 We
further define a normalized score function [4]

s(o
(k)
t ; Λ) = log p(o

(k)
t |Λωc) − log p(o

(k)
t |Λωb) (2)

where Λ = {Λωc , Λωb} contains the Gaussian mixture models
(GMMs) that characterize the client speaker (ωc) and the back-

1As it is likely that the utterances are obtained from the same speaker
under the same environment in a verification session, moving feature vec-
tors from utterances to utterances will have the same effect as partitioning
a long utterance into a number of equal-length short utterances. In fact, the
equal-weight approach concatenates several utterances into one utterance
and determines the score mean of the concatenated utterance. The idea is
identical to moving the feature vectors among the utterances here.
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ground speakers (ωb), and log p(o
(k)
t |Λω) is the output of GMM

Λω , ω ∈ {ωc, ωb}, given observation o
(k)
t .

In [3], frame-level fused scores are computed as

s(o
(1)
t , . . . ,o

(K)
t ; Λ) = s(Ot; Λ) =

∑K

k=1
α

(k)
t s

(k)
t (3)

where t = 1, . . . , T , Ot = {o(1)
t , . . . ,o

(K)
t } contains the K ob-

servations from the K utterances at frame t and α
(k)
t ∈ [0, 1] rep-

resents the confidence (reliability) of the observation o
(k)
t . Then,

the mean fused score

s(U ; Λ) =
1

T

∑T

t=1
s(Ot; Λ) (4)

is compared against a decision threshold for decision making. By
imposing different constraints on the values of α

(k)
t , we can obtain

two fusion models, namely equal-weight fusion ([2], which is our
baseline) and zero-sum fusion:

• equal-weight fusion: α
(k)
t = 1

K
∀ t = 1, . . . , T and

k = 1, . . . , K;

• zero-sum fusion:
∑K

k=1 α
(k)
t = 1 ∀ t = 1, . . . , T .

Note that for zero-sum fusion, scores from different utterances
compete with each other because the fusion weights from differ-
ent utterances sum to one; whereas there is no competition among
the scores in equal-weight fusion, as all weights are equal.

To incorporate the prior information about the scores, the fu-
sion weights α

(k)
t are made dependent on both the training data

(prior information) and recognition data. Specifically, using en-
rollment data, the score mean µ̃p and score variance σ̃2

p of the
client’s and background speakers’ speech are computed. We refer
to these parameters as prior score and prior variance. Then, dur-
ing verification, the claimant is asked to utter K utterances and the
fusion weights are computed as

α
(k)
t =

exp{(s(k)
t − µ̃p)2

/
2σ̃2

p}
∑K

k=1 exp{(s(k)
t − µ̃p)2

/
2σ̃2

p}
(5)

where t = 1, . . . , T and k = 1, . . . , K .
Fig. 1 depicts the dataflow of the verification process and the

architecture of the fusion models. While this architecture bears
a slight resemblance to that of the hierarchical mixture-of-expert
(HME) [5] and the class-in-experts [6] in that all of these mod-
els posses a gating network with outputs being dependent on input
data, there are also important differences. First, the gating net-
work in our model works on the score space, while that of HME
and class-in-experts works on the feature space. Second, there is a
major difference in the algorithm for training the gating network.
While the HME requires the generalized EM algorithm for train-
ing their gating networks in order to capture the importance of
individual experts, our model makes use of the highly representa-
tive information extracted from the training sessions for the same
purpose. Both of these differences make our model more practi-
cal because (1) the input dimension of the gating networks can be
considerably reduced and (2) iterative optimization of the gating
networks is no longer required.

3. FUSION OF SORTED SCORES

As the fusion model described in Section 2 depends on the pattern-
based scores of individual utterances, the positions of scores in

utterances

Claimant’s

(Eqn. 4)
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Fig. 1. Architecture of the multi-sample fusion model.

the score sequences may also affect the final fused scores. We
propose to sort the scores in the score sequences before fusion such
that small scores will always be fused with large scores. This is
achieved by sorting half of the score sequences in ascending order
and the other half in descending order. Note that the fusion of
sorted score applies only to even numbers of utterances.

3.1. Theoretical Analysis

Here, we provide a theoretical analysis to explain why the fusion
of sorted scores is better than the fusion of unsorted scores. Let us
consider a hypothetical situation in which the distributions of the
speaker scores are Gaussian. Let us also assume that a claimant
will utter two utterances in a verification session. We denote the
scores of the two utterances as s

(1)
t and s

(2)
t for t = 1, . . . , T .

Fig. 2 depicts the probability of occurrences of (s
(1)
t , s

(2)
t ) when

the means of s
(1)
t and s

(2)
t are 0.8 and 1.2 respectively and their

variances are identical. The straight line L in the lower part of
Fig. 2 separates the regions for which s

(2)
t ≷ −s

(1)
t + 2µ̃p where

µ̃p = 0 is the prior score. According to (5), the fusion function (3)
will emphasize the larger scores of the score pairs (s

(1)
t , s

(2)
t ) if the

pairs fall in the region above Line L, i.e. s
(2)
t − µ̃p > µ̃p − s

(1)
t .

This is because in that region, there are two possible combinations:
(a) both scores are larger than the prior score and (b) only one
of the scores is larger than the prior score and the other one is
smaller. In the former case, it is obvious that (5) will assign a
larger weight to the larger score; in the latter case, as the larger
score is always further away from µ̃p than the smaller score does, a
larger weight will still be assigned to the larger score. Both of these
situations will make the fusion function (3) to emphasize the larger
score. On the other hand, the fusion function (3) will emphasize
the smaller scores when the score pairs fall in the region below the
dashed line L. This is because the smaller score is now further
away from the prior score than the larger score does. For the score
distribution shown in Fig. 2, the mean of the data-dependent fused
scores computed using (3)-(5) will be larger than that computed
using equal-weight fusion. On the other hand, if the majority of
(s

(1)
t , s

(2)
t ) pairs fall in the lower region of Line L, the opposite

situation will occur.
In the above analysis, the increase or decrease of the mean

fused scores is only probabilistic because there is no guarantee that
the scores of the two utterances (s

(1)
t , s

(2)
t ) ∀t will fall in either

the upper-right region or the lower-left region of the score space
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Fig. 2. Probability of (s(1)
t ,s(2)

t ) pairs. The means of the two Gaussian
distributions are 0.8 and 1.2. We assume that the prior score µ̃p is 0.

together. There are many cases in which some of the (s
(1)
t , s

(2)
t )

pairs fall in the region above Line L in Fig. 2 and others in the
region below it, even though the two utterances are obtained from
the same speaker. This situation is undesirable because it intro-
duces uncertainty to the increase or decrease of the mean fused
scores. This uncertainty, however, can be removed by sorting the
two score sequences before fusion takes place, because the scores
to be fused will always lie on a straight line. For example, if we de-
note the mean scores of both utterances from the client speaker as
µ and assume that s

(1)
t is sorted in ascending order and s

(2)
t in de-

scending order, we can obtain the relationship: µ−s
(1)
t ≈ s

(2)
t −µ

∀t. This is the straight line M (s
(2)
t = −s

(1)
t + 2) shown in Fig.

2 when µ = 1. Evidently, Line M lies in the region where large
scores are emphasized. As a result, an increase in the mean fused
score can be guaranteed.

3.2. Gaussian Example

Here, we provide a Gaussian example to demonstrate the merit of
data-dependent fusion and the fusion of sorted scores. Fig. 3 il-
lustrates an example where the distributions of the client speaker
scores and the impostor scores are assumed to be Gaussian. It is
also assumed that both the client and the impostor utter two utter-
ances. The client speaker’s mean scores for the first and second
utterances are equal to 1.2 and 0.8 respectively. Likewise, the im-
postor’s mean scores for the two utterances are equal to −1.3 and
−0.7. Fig. 3(a) depicts the score distributions of the four utter-
ances before fusion, and Fig. 3(b) plots the dispersion between
the mean of the fused client scores s(U ; Λ|U ∈ client) and the
mean of the fused impostor scores s(U ; Λ|U ∈ impostor) against
the prior score µ̃p using different fusion approaches. Obviously,
equal weight fusion will produce a mean speaker score of 1.0 and
a mean impostor score of −1.0, resulting in a score dispersion of
2.0. These two mean scores (−1.0 and 1.0) are indicated by the
two vertical lines in Fig. 3(b). We can see from Fig. 3(b) that
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Fig. 3. (a)Distributions of client scores and impostor scores as a result
of four utterances: two from a client speaker and another two from an
impostor. The mean of the client scores is 1.0 and the mean of impostor
scores is −1.0. (b)Dispersion between the means of the fused client scores
and the fused impostor scores based on equal-weight fusion and zero-sum
fusion.

when the prior score µ̃p is set to a value between these two means
(i.e. between the vertical lines), the scores dispersion can be larger
than 2.0.

As the verification decision depends on the difference between
the mean fused score s(U ; Λ) and the decision threshold, a large
dispersion between the mean of the fused client scores and the
mean of the fused impostor scores suggests that a more reliable
decision can be made. We can see from Fig. 3(b) that there is
a range of prior score µ̃p for which the score dispersion obtained
by zero-sum fusion can be larger than that of equal-weight fusion.
There is also an optimum prior score at which the score dispersion
is maximum. This explains why our previous proposal [7] on the
adaption of prior scores based on the likelihood that the claimant
is an impostor can reduce the error rate by as much as 17% when
compared to the case without prior score adaptation.

To conclude, our fusion algorithm will either increase or de-
crease the fused score mean depending on the value of the prior
score and the score mean before fusion. From Fig. 3(b), we can
observe that when the prior scores are set between the mean of
client scores and the mean of impostor scores (i.e. between the
two vertical lines), theoretically the mean of fused client scores in-
creases and the mean of fused impostor scores decreases. This has
the effect of increasing the difference between the mean of fused
client scores and the mean of fused impostor scores. As the mean
of the fused scores is used to make the final decision, increasing
the score dispersion can improve the reliability of the decision.
Fig. 3(b) also shows that for a wide range of prior score µ̃p, the
fusion of sorted scores produces a larger score dispersion as com-
pared to the fusion of unsorted scores. This will lead to a reduction
in error rate, as will be demonstrated in Section 4.
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Equal Error Rate (%)
Fusion Method cb1 cb2 cb3 cb4 el1 el2 el3 el4 pt1 senh average
Equal weight fusion 5.11 4.33 19.15 12.89 4.42 8.31 9.96 6.29 7.57 2.99 8.10
ZS w/o sorting 4.01 3.27 15.92 10.55 3.04 6.51 8.67 4.75 7.51 2.32 6.67
ZS w/ sorting 3.60 2.86 15.30 9.91 3.49 4.65 6.81 4.02 6.59 1.99 5.92

Table 1. The equal error rates achieved by different fusion approaches, using utterances from 10 different handsets for verification. Each figure is based on
the average of 100 speakers, each impersonated by 50 impostors. ZS stands for zero-sum fusion.
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Fig. 4. DET curves for equal-weight fusion and zero-sum fusion with and
without score sorting. The curves were obtained by using the utterances of
handset “el2” as verification speech.

4. EXPERIMENTS AND RESULTS

We used a GSM speech coder to transcode the HTIMIT corpus
[8] and applied the resulting transcoded speech in a speaker veri-
fication experiment similar to [9] and [10]. Sequences of 12th or-
der MFCCs were extracted from 28ms speech frames of uncoded
and GSM-transcoded utterances at a frame rate of 71 Hz. Dur-
ing enrollment, we used the SA and SX utterances from handset
“senh” of the uncoded HTIMIT to create a 32-center GMM for
each speaker. A 64-center universal background GMM [4] was
also created based on the speech of 100 client speakers recorded
from handset “senh”. The background model will be shared among
all client speakers in subsequent verification sessions.

For verification, we used the GSM-transcoded speech from all
ten handsets in HTIMIT. As a result, there were handset and coder
mismatches between the speaker models and the verification ut-
terances. We used stochastic feature transformation with handset
identification [9] to compensate the mismatches. We assume that
a claimant will be asked to utter two sentences during a verifica-
tion session. Therefore, for each client speaker and each impostor,
we applied the proposed fusion algorithm to fuse two indepen-
dent streams of scores obtained using his/her SI sentences. As
the fusion algorithm requires the two utterances to have an identi-
cal number of feature vectors (length), we computed the average
length of the two utterances and then appended the extra patterns
in the longer utterance to the end of the shorter utterance. After
that, we sorted the score sequences in opposite order and fused the
sorted scores according to (3) and (5).

Fig. 4 depicts the detection error tradeoff curves based on 100
client speakers and 50 impostors using utterances from handset
“el2” for verification. Fig. 4 clearly shows that data-dependent
fusion is able to reduce the error rates significantly, and sorting the
scores before fusion can reduce the error rate further.

Table 1 shows the speaker detection performance of 100 speak-
ers and 50 impostors for the equal-weight fusion approach and the
proposed fusion approach with and without sorting the score se-
quences. Table 1 clearly shows that our proposed fusion approach
outperforms the equal-weight fusion. In particular, after the score
sequences have been sorted, the equal error rates are further re-
duced from 6.67% to 5.92%, which represents an 11% error rate
reduction.

5. CONCLUSIONS

We have presented a novel fusion model that makes use of prior
score statistics and the distribution of the recognition data. By us-
ing a Gaussian example, we have shown that a simple but useful
score sorting method can significantly increase the dispersion be-
tween speaker scores and impostor scores. Results of speaker ver-
ification using GSM-transcoded speech and feature transformation
also agree with the Gaussian example, and an 11% error reduction
as compared to the fusion of unsorted score sequences has been
achieved. Compared to the equal-weight fusion approach, data-
dependent fusion with score sorting reduce the error rate by 26%.
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