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ABSTRACT

We study the demodulation problem in time division mul-
tiple access (TDMA) wireless asynchronous transfer mode
(ATM) networks, where Rician flat fading channels are con-
sidered. A linear interpolation with decision feedback com-
bined with a modified version of the self-organizing-map
(LIDF-SOM) demodulator is proposed for such a system.
We obtain the training sequence by exploiting medium ac-
cess control (MAC) and data link control (DLC) protocols
such that a semi-blind adaptive demodulator is implemented.
Simulation results show that LIDF-SOM obtains 0.4−1.0dB
gain over Rician fading channels as compared to LIDF alone.

1. INTRODUCTION

Wireless Asynchronous Transfer Mode is the core of the fu-
ture broadband integrated services digital network (B-ISDN).
Many researchers have investigated wireless ATM physical
layer design. The most important technical challenge facing
ATM designers is how to compensate for time-varying im-
pairments of radio channels [1]. Bao and Lang [2] proposed
a blind channel estimation with decision feedback equalizer
aided with MAC and DLC ATM protocols, and achieved
better performance than the conventional blind equalizer.
Liang [3] investigated a Type II fuzzy logic demodulator for
time-varying channels. Unfortunately, both of these algo-
rithms require a training epoch, which is not computation-
ally efficient. A very popular scheme named LIDF, which
was proposed by Viterbi [4], uses a maximum-likelihood
method to estimate the phase gain of the channel. The train-
ing sequence (also called unique words (UWs)) is utilized to
remove the phase ambiguity caused by the estimation pro-
cedure’s inverse-tangent function. This method has been
widely used in mobile communications with burst trans-
mission. However, LIDF does not perform well for fading
channels if the number of UWs are not enough since LIDF
lacks adaptation property. SOM can generate a set of code
book using a self organizing process, and it has been widely
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used for data compression but rarely used for communica-
tion systems. In this paper we propose a hybrid-structured
LIDF-SOM demodulator, aided by the MAC and DLC pro-
tocols, for ATM networks. SOM is altered so that it is suit-
able to be used as a demodulator over fading channels. In
Section 2, we discuss the channel model. In Section 3, the
LIDF algorithm is reviewed. In Section 4 we describe a
data mining technique. SOM and its modified version are
introduced in Section 5. Simulation results are presented in
Section 6, and we conclude this paper in Section 7.

2. CHANNEL MODEL

Rician fading occurs when there is a strong specular (line
of sight) signal in addition to the scatter (multipath) com-
ponents. The received waveform in complex form is r(t) =
c(t)·s(t)+n(t), where n(t) is additive white gaussian noise
with power spectral density N0/2 (Watts/Hz) and s(t) is
the transmitted signal. The complex channel gain, c(t) =
cI(t) + jcQ(t), can be treated as a wide-sense stationary
complex gaussian random process, where cI(t) and cQ(t)
are Gaussian random processes with identical variance δ
and non-zero means mI(t) and mQ(t), respectively. The
phase of the channel gain is uniformly distributed between
−π and π, and the magnitude of the channel gain has a Ri-
cian distribution,

fr(x) =
x

δ2
e(− x2+s2

2δ2 )I0(
xs

δ2
) x ≥ 0 (1)

where s2 = m2
I(t) + m2

Q(t), I0(·) is the modified Bessel
function of zeroth order, and x is a dummy variable. A Ri-
cian channel is characterized by the Rician factor K, which
is the ratio of the direct path power to that of the multipath,
i.e., K = s2/2δ, and the Doppler spread (or single-sided
fading bandwidth) fD. Also, the direct path is shifted in
frequency by a factor of 0.7fD. The auto-correlation func-
tion associated with this channel is [3]

Rc(τ) =
K

K + 1
ej2π0.7fDτ +

1
K + 1

J0(2πfDτ) (2)

where J0(·) is the Bessel function of zeroth order. The
output of the matched filter sampled in time synchronism
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can be modelled as r[k] = sk · c[k] + n[k], where sk is
the information symbol and c[k] is the sampled complex-
valued channel gain. QPSK modulation is assumed in this
paper. In QPSK every 2 bits are mapped to 1 symbol as:
00 → 1, 01 → j, 11 → −1 and 10 → −j so that sk can
be 1, j,−1 or −j, where j =

√−1. The noise at the out-
put of the matched filter, n[k], is an additive white gaussian
noise (AWGN). We simulate the Rician fading channel us-
ing a direct path added to a Rayleigh fading generator. The
Rayleigh fading generator is based on Jakes’ model [5], in
which an ensemble of sinusoidal waveforms are added to-
gether to simulate the coherent sum of scattered rays with
Doppler spread fD arriving from different directions to the
receiver. The amplitude of the Rayleigh fading generator is
controlled by the Rician factor K, and the number of oscil-
lators for simulating the Rayleigh fading is 62.

3. REVIEW OF LIDF AND THE OPTIMAL
RECEIVER

Fig.1 illustrates the general structure of the phase estimator
used in LIDF [4]. Let the estimation period be TE and let it
encompass 2N +1 m-ary symbols, where TE = (2N +1)T
and T has a time duration of one symbol. Suppose we
wish to estimate the phase at the midpoint of the estima-
tion interval so that there are N samples before and after
the sample whose phase is to be estimated. Obviously, for
the m > 1 case, the phase takes on one of m different
values during each successive symbol. In Fig. 1, the first
box therefore performs r′In + ir′Qn = F (ρn)eimΦn , where

ρn =
√

r2
In + r2

Qn and Φn = tan−1(rIn/rQn). Multiply-

ing the phase by m and then dividing the arctangent func-
tion by m gives rise to an m-fold ambiguity in the phase es-
timate. This ambiguity can be removed by referring to the
UWs. After estimating the phase of the received symbol,
detecting the symbol is a hypothesis test procedure based
on UWs which determine the decision boundary.

When QPSK modulation is used, it is well known that
the probability of error for the optimal receiver over a white
gaussian channel is Pe = Q(

√
Es/N0), where Es is the

symbol energy. If the channel is subject to Rician fading,
however, we must average Pe over all possible received
symbol energy ER = Es|c|2, where |c| is the magnitude
of channel gain which is random. During the hypothesis
test, an optimal receiver will use a varying decision bound-
ary depending upon the received symbol, and will have to be
adaptive. Assuming that we know the channel gain exactly,
the performance of the optimal receiver in fading media can
be analyzed by determining the probability of error for a
given received symbol energy and then averaging over the
known probability density function of ER. Since |c| follows
a Rician distribution (1), v = ER/Es = |c|2 then has a non-
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Fig. 1. Structure of phase estimator for m-PSK system

central chi-square distribution with 2 degrees of freedom,

fV (x) =
1
2δ

e−(s2+x)/2δ2
I0(

√
x

s

δ2
) (3)

where s, δ and I0(·) have the same meaning as in (1). Now
the probability of error expression becomes

Pe,fading =
∫ ∞

0

Q(
√

Esx

N0
)fV (x)dx. (4)

Note that LIDF lacks the adaptive process which is needed
for an optimal receiver. For the slow flat fading considered
in this paper, the envelope, though random from bit to bit,
assumes a constant value over each bit interval. Further-
more, from the channel auto-correlation function (2), the
channel gains among several bits are dependent with their
extent determined by K and fD. So it is possible to track
the channel gain, and an adaptive decision boundary, even
though it is not optimal, will be available for the hypothesis
test. The optimal receiver, however, only exists theoreti-
cally since we don’t know the channel gain exactly in real
communications. It is known that in a SOM network the
cluster centers (code book) are adaptively adjusted towards
the input vectors. If we let the cluster center vectors and
the input vector in a SOM network represent UWs and a re-
ceived symbol in a demodulator respectively, it is possible
to make UWs adapt to a fading channel. In the following
sections, we introduce a method for obtaining UWs from
protocols, give a brief review of SOM and describe how to
tailor the SOM for demodulation.

4. OBTAINING UWS BY DATA MINING

In a real communication system, some training sequences
(UWs), which are known to both transmitter and receiver,
are intentionally sent from transmitter to receiver. The chan-
nel response can be estimated based upon the UWs by many
methods such as Kalman filtering [6]. For the uplink in the
ATM network, however, some known headers can be ob-
tained from the MAC and DLC protocols based on Bao and
Lang’s idea [2], which is derived from NEC’s WATMnet
prototype [7]. These headers are known both to transmitter
and receiver, so they can be used as UWs. However, since
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the known cell’s header is mined from protocols, we cannot
guarantee it contains all the QPSK symbol patterns: 1, j,
−1 and −j. It is possible that we only have the 1 and -1
patterns. We developed the following method to overcome
this limitation.

If we multiply the received symbol r[k] by jm, where
j =

√−1 and m ∈ {1, 2, 3}, we can get
jmr[k] = jmskc[k] + jmn[k]. (5)

Since n[k] is AWGN, it’s easy to prove that for a fixed value
of m, jmn[k] is also AWGN with the same mean and vari-
ance. Observe that on the right hand side of (5), c[k] is a
channel gain, jmn[k] is AWGN and jmsk is another QPSK
symbol. Then jmr[k] is a new constructed QPSK symbol
pattern for the case that jmsk is transmitted through cur-
rent channel. It is evident that if one pattern is available, it
is possible to construct the other 3 patterns so that we can
get all 4 QPSK symbol patterns. We then find the average
of each of the 4 patterns and use them as the initial 4 sym-
bol patterns of the UWs. The UWs determine the decision
boundary which can be used in the hypothesis test. Note
that the channel estimation procedure is not needed here.

5. SELF-ORGANIZING-MAP NETWORK

In this section, we first introduce the traditional SOM net-
work, then we give a modified version of SOM which is
suitable for adaptive demodulation. In the traditional SOM
model [8], x = [x1x2. . . xm]T denotes the m-dimensional
input vector, wj = [wj1,wj2. . .wjm]T , j = 1,2. . . l. denotes
the jth cluster center vector which is initialized randomly.
For each input vector x, we compute the inner product be-
tween x and wj as wT

j x. The ith center is declared to be the
winning center if wi has the largest inner product with x.
In addition, there are some neighbors of the winning center
declared to be excited centers under the control of a topo-
logical neighborhood function hji. Letting dji = |j − i|
denote the lateral distance between the winning center i and
the candidate center j to be excited, a typical choice of hji

is hji = exp{−d2
ji/2σ2(n)}, where σ(n) is the effective

width of the topological neighborhood which shrinks with
time n as σ(n) = σ0exp{−n/τ1}, here τ1 is a time con-
stant, and σ0 is an initial value. After locating the winning
center and its excited neighbors to x, we move them towards
the input vector by performing

wj(n + 1) = wj(n) + η(n)hji(x)(n)(x − wj(n)). (6)

Here η(n) is the learning rate, which starts at a small initial
value η0 and decreases with time n as η = η0 ·exp{−n/τ2},
where τ2 is a time constant. wj(n) represents the winning
or an excited center’s vector.

SOM is a clustering method, in which the winning and
excited cluster center vectors move towards the incoming
data samples. The cluster centers finally converge to the

locations that represent the probability distribution of the
data [9]. Recall that in section 3 the optimal receiver for
fading channels must be adaptive, can we adapt UWs to the
received symbol by the SOM rule above?

We can adopt SOM directly to the demodulation prob-
lem. In a 4 cluster centers SOM network, for example, we
can use the 4 center vectors and the input vector to represent
UWs and the received symbol in a demodulator. We then
move the winning and excited UWs towards the received
symbol by performing (6) to adjust the decision boundary.
However, from section 4 we know that we can construct the
other received QPSK symbols using the currently demodu-
lated one. Based on this idea we modified (6) as

wj(n + 1) = wj(n) + η(n)hji(x)(n)(x − wi(n)). (7)

The difference between them is that x − wj(n) in (6) is
changed to x − wi(n) in (7), where wi(n) denotes the win-
ning UW, and x denotes the received symbol in the demod-
ulation problem. By doing this, we rotate the winning and
excited UWs in the same direction but with a different mag-
nitude in the QPSK signal constellation (note that the ro-
tation direction is controlled by x − wi(n) which is fixed,
while the rotation magnitude is computed by hji(x) that is
different for each UW). The motivation behind this modifi-
cation is that there are four groups of QPSK symbols at the
receiver side, and each group of symbols is detected based
on their corresponding UW by a minimum distance criteria
in the hypothesis test. The modified SOM is equivalent to
that we construct a QPSK symbol based on the received one
for each excited UW, then make each excited UW move to-
wards its corresponding constructed symbol. Therefore, the
winning and excited UWs move towards and finally con-
verge to their corresponding group centers. However, if we
use the original SOM, the excited UWs may move towards
another group’s center so that it is not as suitable as the mod-
ified version of SOM for demodulation. The other rules in
traditional SOM are unchanged and they warrant the con-
vergence of our algorithm.

6. SIMULATION STUDIES

Here we study the uplink demodulation problem for an ATM
network, where QPSK modulation is considered. The stan-
dard ATM data cell is 53 bytes long [7]. In our paper we as-
sume that the known header is 2 bytes, which is equivalent
to 8 UWs and 216 information symbols. We then concate-
nate 5 such cells into a burst. At the beginning of each cell
inside a burst, we re-initialize the UWs using the known cell
header such that the propagation error is blocked through
the cell. The LIDF-SOM algorithm is described as follows,

1. Calculate the initial UWs from the known cell header
using the data mining technique.

2. Use LIDF (N = 32) to detect the received symbol.
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Fig. 2. Simulation results for K = 9dB, fD = 20Hz

3. Adapt the UWs to the received symbol using the mod-
ified version of SOM.

4. If we have reached the end of a cell, go to 1. If we
have reached the end of the burst, stop. Otherwise go
to 2.

We compared our algorithm to LIDF and the theoreti-
cal bit error rate (BER) calculated from (4). Two Rician
channels were studied: one with Rician factor K = 9dB
and doppler shift fD = 20Hz; and the other one with Ri-
cian factor K = 12dB and doppler shift fD = 100Hz. For
each channel we ran our simulation for different values of
Eb/N0(dB), where Eb = Es/2 is the bit energy. The per-
formances of LIDF and LIDF-SOM for both channels are
plotted in Fig. 2 and 3 respectively. It is clear that our al-
gorithm outperforms LIDF and approaches the theoretical
BER. For the first case, the SNR in LIDF-SOM only has
roughly 0.15dB loss from the theoretical value at BER =
4%, where LIDF has about 0.55dB loss. For the second
case, LIDF cannot perform well because the transmitted
signal is severely distorted by the channel, and the infor-
mation of the channel provided by such a limited number of
UWs is not enough to obtain a good estimate for the chan-
nel. As described in section 3, the optimal receiver for a
fading channel requires adaptive decision boundary. There-
fore if we adapt UWs as in the LIDF-SOM algorithm, the
BER can still approach the theoretical value and we achieve
about 1dB gain over LIDF. Note that though the SOM has a
training process with several iterations involved, our method
does not go through the training process but instead utilize
the SOM as an adaptation process. Therefore, the training
phase was competed at the same time as the detection pro-
cedure.

7. CONCLUSIONS

Using a modified SOM based demodulator, an adaptive and
near-optimal receiver is implemented for an ATM system.
Our algorithm avoids training or channel estimation, which
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Fig. 3. Simulation results for K = 12dB, fD = 100Hz

is required by many other receivers. UWs are not required
at the transmitter. Instead, we obtain them by a data min-
ing technique. Even though the computational load of our
method is slightly more than that of LIDF, it is worthwhile
to pay that cost for the performance gains we have obtained.
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