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ABSTRACT
We investigate a simple algorithm that combines multiband pro-

cessing and least squares fits to estimate f0 contours in speech.
The algorithm is untraditional in several respects: it makes no use

of FFTs or autocorrelation at the pitch period; it updates the pitch

incrementally on a sample-by-sample basis; it avoids peak picking

and does not require interpolation in time or frequency to obtain
high resolution estimates; and it works reliably, in real time, with-

out the need for postprocessing to produce smooth contours. We

show that a baseline implementation of the algorithm, though al-

ready quite accurate, is significantly improved by incorporating a

model of statistical learning into its final stages. Model parame-
ters are estimated from training data to minimize the likelihood of

gross errors in f0, as well as errors in classifying voiced versus un-

voiced speech. Experimental results on several databases confirm

the benefits of statistical learning.

1. INTRODUCTION

There exists a large body of work on pitch determination of speech
signals[1, 2, 3, 4]. The goal of algorithms for pitch tracking is to

estimate the fundamental frequency, f0, of speech as generated by

the quasi-periodic vibration of the vocal cords (and as corresponds

typically to its perceived pitch).
Most algorithms for pitch tracking involve one or more of the

following components: (i) preprocessing to enhance the periodic-

ity of the waveform (e.g., lowpass filtering, center clipping), (ii)

short-time analysis of speech to obtain initial estimates of f0, and
(iii) postprocessing to correct isolated errors and produce smooth

contours (e.g., median filtering, dynamic programming). Methods

in the time domain[2, 3, 4] typically rely on autocorrelation at the

pitch period, detecting f0 from one or more peaks in the autocorre-
lation function. Likewise, methods in the frequency domain[1, 4]

typically rely on FFTs, detecting f0 (for example) from peaks the

magnitude cepstrum or harmonic power spectrum. Peak-picking

in either domain can be difficult, requiring special heuristics to
handle the complexities of voiced speech (e.g., quasiperiodicity,

nonstationarity). Initial f0 estimates from peak-picking are also

limited in resolution by the sampling rate (in the time domain) or

FFT size (in the frequency domain), though in either domain they

can be subsequently refined by interpolation.
Recently, we introduced a multiband least squares

algorithm[5] for pitch tracking that takes a different approach.

In particular, the algorithm makes no use of FFTs or autocor-

relation at the pitch period; it does not require interpolation to
obtain high resolution estimates of f0; and it works reliably, in

real-time, without the need for postprocessing to produce smooth

contours. The algorithm is based on the assumption that the low

frequency spectrum of voiced speech can be modeled as a sum

of (noisy) sinusoids occurring at integer multiples of f0. Using a

nonlinearity to concentrate energy at f0 and a bank of overlapping
bandpass filters with carefully arranged passbands, the algorithm

detects voiced speech by ascertaining that the output of one filter

resembles a sinusoid at frequency f0, while the others do not.

Sinusoids are detected by simple, one-parameter least-squares fits.
In this paper, we significantly extend our previous work. Not

only do we benchmark the algorithm on much larger data sets,

but we also incorporate a model of statistical learning into its fi-

nal stages. The model is a multiway classifier trained to select the
bandpass filter whose output reveals the fundamental frequency f0

of the speech waveform. The parameters of the model are esti-

mated from the TIMIT database[6], containing over two hours of

speech. The classifier adds little computational overhead to the
original algorithm, but yields significantly fewer errors in estimat-

ing f0 and classifying voiced versus unvoiced speech. We have

also incorporated the multiband classifier into a real-time imple-

mentation for pitch tracking.

2. MULTIBAND LEAST SQUARES METHOD

In this section, we briefly review the multiband least squares

method for pitch tracking; more details can be found in our earlier
work[5]. We first explain how least squares fits can be used to de-

tect sinusoids in individual subbands, then extend this approach to

the more general problem of estimating the fundamental frequency

of a periodic (though not sinusoidal) waveform.

2.1. Detecting sinusoids

Consider the problem of detecting sinusoids. The approach we de-

scribe here is a simple variant of Prony’s method[7]. Note that for

a discretely sampled sinusoid sn = A sin(ωn+θ), each sample is

proportional to the average of its neighbors, with the constant of
proportionality given by:

sn = (cos ω)−1
hsn−1 + sn

2

i
. (1)

We can use eq. (1) to measure how well an unknown signal xn is

described by a sinusoid. In particular, consider the error function:

ε(α) =
X

n

h
xn − α

“xn−1 + xn+1

2

”i2

. (2)

If xn is well described by a sinusoid, then the right hand side of
eq. (2) will achieve a small value when the coefficient α is tuned to

match its frequency, as in eq. (1). The minimum error least squares

fit is given by:

α∗ =
2

P
n xn(xn−1 + xn+1)P
n(xn−1 + xn+1)2

. (3)
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We can judge whether xn is sinusoidal by checking two condi-

tions: first, ε(α∗) � ε(0), and second, that |α∗| > 1. The first

condition establishes that the residual error is small relative to the
overall energy of the signal, while the second establishes that the

signal oscillates with an estimated (real-valued) frequency:

ω∗ = cos−1(1/α∗). (4)

The above scheme has several useful properties for our purposes.

First, the frequency estimate is the solution to a least squares prob-
lem; hence, its resolution is not limited by the sampling rate, as

(say) the location of the peak of an autocorrelation function. Sec-

ond, it relies only on the zero-lagged and one-lagged autocorre-

lation in eq. (3), namely
P

n x2
n and

P
n xnxn±1. Third, the

method is easily adapted to tracking the frequency of nonstation-

ary signals; we simply analyze the signal with windows that shift

one sample at a time, incrementally updating the autocorrelations

that appear in eq. (3) for adjacent windows.

Eq. (1) can be viewed as a one-parameter autoregression, a

predictive model that forecasts sn+1 from sn and sn−1. The sec-

ond derivative of its error function thus characterizes the uncer-
tainty in the fit due to noises in the observation process[8]. In-

tuitively, the closer the signal xn is to a sinusoid, the sharper the

fit and the less its uncertainty. Let N (α) = ε(α)/ε(0) be the di-

mensionless, normalized error function (which is insensitive to the
amplitude of the signal), and let ∆µ denote the uncertainty in the

estimated log-frequency µ∗ =log ω∗, characterized by:

∆µ =

»
∂2 logN

∂µ2

–− 1
2

µ=µ∗
=

cos2 ω∗

ω∗ sin ω∗

»
1

ε

∂2ε

∂α2

–− 1
2

α=α∗
(5)

By working in the log domain, we measure uncertainty in units

proportional to the distance between notes on the musical scale.

We shall see in later sections that this measure of uncertainty is a
useful feature for pitch tracking.

2.2. Estimating f0 in speech

The multiband least squares method for pitch tracking is a simple

extension of the method in the previous section. The algorithm op-

erates in a number of stages, as shown in Fig. 1, and as summarized

below.

2.2.1. Preprocessing

In the first stage, the signal is lowpass filtered to remove energy
above 1 kHz, then transformed by a pointwise nonlinearity such

as squaring or half-wave rectification. The lowpass filter is used

to remove the aperiodic components of voiced fricatives, while the

nonlinearity helps to concentrate energy at f0 in the case of a weak
or missing fundamental. The signal can also be downsampled at

this stage for faster processing.

2.2.2. Filterbank

In the second stage, the signal is analyzed by a bandpass filter-

bank whose filters are designed to satisfy two competing criteria.

On one hand, we make them sufficiently narrow to resolve the
fundamental at f0, while on the other hand, we make them suf-

ficiently wide to integrate higher-order harmonics. An idealized

two-octave filterbank with these properties is shown in Fig. 1. The

result of this analysis for voiced speech is that the output of the

pointwise
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Fig. 1. Multiband least squares method for estimating f0.

filterbank consists of either sinusoids at f0 (and not any other fre-
quency) or signals do not resemble sinusoids at all. For example,

consider a segment of voiced speech with fundamental frequency

f0 = 180 Hz. In this case, the second filter with a passband of

50–200 Hz will output a sinusoid at f0 = 180 Hz. By contrast,
the first filter will output low frequency noise; the third filter will

pass the first and the second harmonics at 180 Hz and 360 Hz, and

the fourth filter will pass the second, third, and fourth harmonics

at 360, 540, and 720 Hz. Thus, the outputs of the first, third, and
fourth filters bear no resemblance to pure sinusoids. While the ide-

alized filters in Fig. 1 have unrealizably steep rolloffs, we obtain

the same effect in practice by implementing a larger bank of six

filters with narrower (1.6 octave) passbands.

2.2.3. Sinusoid detection

The final stage of the algorithm is sinusoid detection at the outputs
of the filterbank, using the method described in section 2.1. Run-

ning least squares fits and their uncertainties are computed from

eqs. (3–5). The fits are updated on a sample by sample basis for

the output of each filter. A voicing decision is then made for frames
whose total energy exceeds a minimum “silence” threshold. Non-

silent frames are labeled as voiced if the uncertainty ∆µ of any

subband f0 estimate from the filterbank is less than a specified

threshold; in this case, the value of f0 is estimated from the sub-
band with the sharpest least squares fit. Otherwise, the frame is

labeled as unvoiced.

3. MULTIBAND STATISTICAL LEARNING

In previous work[5], we showed that the algorithm from section 2

works well for batch and real-time f0 estimation in speech. Nev-

ertheless, the algorithm hinges in an unsatisfying way on two

heuristics—namely, the manual tuning of energy and sharpness-

of-fit thresholds to minimize errors in voiced/unvoiced classifica-
tion, and the use of the uncertainty criterion in eq. (5) to select

the correct subband from which to estimate f0. It is obvious that

additional features could be used for these purposes, but it is not

obvious (from a priori knowledge) how to combine them in a sen-
sible way. In this section, we describe a multiband classifier that

can be trained from reference f0 contours to provide better deci-

sions for voiced/unvoiced classification and subband selection in

the final stages of our algorithm.
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3.1. Inputs and outputs

We considered various features as input to the classifier, eventually

settling on the following. For each frame, and in each subband, we

computed three features: the square root of the normalized residual

error N (α), the cube root of the uncertainty measure ∆µ, and the
logarithm of the energy. The nonlinear transformations in these

features were chosen to equalize their dynamic ranges. The same

features at the preceding frame were also included as input to the

classifier. Thus, for each frame, the classifier input consisted of a
36-dimensional feature vector x ∈R36 consisting of six features

from each subband and reflecting not only the signal properties in

that frame but also their first derivatives in time. (Note that features

from succeeding frames were deliberately excluded to minimize
the latency of a real-time implementation.)

The classifier output was a discrete label y∈{0,1,2,3,4,5,6}
indicating either that the frame was unvoiced (y = 0) or that

the output of the yth subband should be used to estimate f0.

Thus, whereas in the original algorithm the signal was classified
as unvoiced or voiced based on simple energy and sharpness-of-fit

thresholds, the multiband classifier was trained to make these deci-

sions by analyzing the much richer input provided by each frame’s

feature vector.

3.2. Model and training

The classifier was trained by multinomial logistic (or “softmax”)

regression[8] on the feature vectors. Target labels for the classi-

fier outputs were provided by reference f0 contours from a large

database of speech (described in section 4).

Softmax regression is a simple model for multiway classifica-
tion. The model computes the posterior probability that a feature

vector x has class label y as:

Pr(y= i|x) =
ewi·xP
j ewj ·x , (6)

where wj is the weight vector attributed to class j, and the sum in

the denominator—over all class labels—ensures that the right hand
side defines a properly normalized distribution. In practice, the

feature vector x is labeled by whichever class maximizes the right

hand side of eq. (6), or equivalently, whichever class maximizes

the dot product wi · x that appears in the exponent. Because of
this, eq. (6) gives rise to piecewise linear class boundaries in the

feature space.

The weight vectors wj are the parameters of the softmax re-

gression. They can be estimated from a large training set of labeled

examples. Let (xt, yt) denote the tth example in the training set.
We choose the parameters to maximize the total log-likelihood of

correct classification:

L =
X

t

log Pr(y=yt|xt). (7)

The log-likelihood L is a concave function of the parameters wj ,

and its global maximum can be computed by iterative procedures

such as gradient ascent or Newton’s method. In our experiments,

we used a variant of Newton’s method that updated one weight
vector at a time, as opposed to all the weight vectors at once: this

was done to avoid computing the entire hessian matrix.

The above model is easily incorporated into the final stages of

the multiband least squares algorithm. Whereas our original im-

plementation only considered the minimum uncertainty ∆µ across

subbands, the classifier in eq. (6) uses much more information

to make voiced/unvoiced decisions and to determine (in voiced

frames) the subband from which to estimate f0. Also, unlike the
manually tuned energy and sharpness-of-fit thresholds in section 2,

here the classifier parameters have the benefit of being optimized

over a large training set of labeled examples.

4. EVALUATION

We evaluated the multiband least squares algorithm for pitch track-

ing on several data sets of speech. To assess the benefits of statisti-
cal learning, we collected results both before and after incorporat-

ing the multiband classifier into the final stages of the algorithm.

4.1. TIMIT data

To train the classifier, a large data set of speech with reference

pitch contours was needed. We used the training portion of the

TIMIT data set[6] for this purpose. The TIMIT utterances are
not distributed with f0 contours, so we used two independent,

state-of-the-art pitch tracking algorithms (get f0 from ESPS[2]

and YIN[3]) in conjunction with the TIMIT phonetic alignments

to derive voiced/unvoiced labels and reference f0 contours. Both
get f0 and YIN were used with their default parameter settings,

except for adjustments of the frame rate. Classifier targets were

derived as followed. Frames were labeled as unvoiced (with a

classifier target of y=0) if both the phonetic alignment and get f0
labeled them as unvoiced. Frames were labeled as voiced if the f0

estimates of get f0 and YIN were within 20% of each other. For

frames labeled as voiced, the f0 estimates from get f0 were con-

verted into targets y∈{1, 2, 3, 4, 5, 6} for the multiband classifier
based on the subbands that contained them. Ambiguous frames,

including those in voiced-unvoiced and unvoiced-voiced transi-

tions, were discarded from training and testing.

The training portion of the TIMIT data set consists of 4620
utterances from adult male and female speakers from the major di-

alect regions of the US; with an analysis window of 40 ms, and a

10 ms shift between frames, a total of 1015630 frames were col-

lected for training (not including discarded frames). The testing
portion of the TIMIT data set consists of 1680 utterances, giving

rise to 369378 frames for testing.

Experimental results on the TIMIT data set are shown in Ta-

ble 1. In the table, MLS and MLS+ refer respectively to the multi-
band least squares algorithm before and after the incorporation of

the statistical learning model. The first two rows report the per-

centage of unvoiced frames misclassifed as voiced (“unvoiced in

error”) and the percentage of voiced frames misclassified as un-
voiced (“voiced in error”). The third row (“gross errors”) reports

the percentage of voiced frames where the f0 estimates from MLS

and MLS+ differed from the ground-truth estimate (supplied by

get f0) by over 20%. Finally, the last row reports the root-mean-
squared (RMS) difference between the estimated f0 and the get f0

value for frames without gross errors.

The benefits of statistical learning are apparent. The incor-

poration of the multiband classifier leads to roughly a halving of
errors in the classification of unvoiced/voiced frames and grossly

incorrect estimates of f0. Note that comparative results for get f0

and YIN do not appear in Table 1 because these algorithms were

used to derive the “ground-truth” estimates of f0.
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Table 1. Results on TIMIT data.

train test

error type MLS MLS+ MLS MLS+

unvoiced in error(%) 4.64 1.42 4.28 1.27

voiced in error (%) 2.25 1.58 2.34 1.65

gross errors (%) 1.31 0.69 1.31 0.70

rms (Hz) 3.41 3.49 3.41 3.53

Table 2. Results on Keele and Edinburgh data.

Keele
error type MLS MLS+ get f0 YIN

unvoiced in error(%) 8.60 7.90 6.83 –

voiced in error (%) 8.87 7.03 3.24 –

gross errors (%) 1.68 1.5 2.29 3.28

rms (Hz) 4.68 4.54 4.5 3.62

Edinburgh
error type MLS MLS+ get f0 YIN

unvoiced in error(%) 4.86 5.65 8.84 –

voiced in error (%) 7.97 5.38 4.29 –

gross errors (%) 0.39 0.67 2.86 3.48

rms (Hz) 5.88 5.88 5.83 6.2

4.2. Keele and Edinburgh data

We also evaluated the MLS algorithms on two smaller data sets

with reference f0 contours derived from laryngograph signals: the

Keele data set[9] and the Edinburgh data set[4]. The Keele data set

contains roughly five minutes of speech from five male and female
adult speakers, while the Edinburgh data set contains roughly five

minutes of speech from two adult speakers, one male and one fe-

male. Both data sets have somewhat different acoustic, phonetic

and linguistic characteristics from those of TIMIT.

The results for the Keele and Edinburgh data sets are shown

in Table 2. Note that the classifier parameters in MLS+ were not

adapted to these data sets; their values were frozen after being es-

timated from the TIMIT training data. The only allowance made
for the Keele and Edinburgh data sets was to scale the energy fea-

tures computed from their waveforms so that they had a similar

histogram as those from the TIMIT waveforms. Here again, the

results show that the incorporation of a statistical learning model
leads to generally improved performance of the MLS algorithm.

For these data sets, it was also possible to evaluate get f0 and

YIN in the same experimental setup. Note that YIN does not

classify frames as voiced/unvoiced, so these error rates are not re-

ported for YIN. Among MLS+, get f0, and YIN, no method uni-
formly outperforms the others. In these comparisons, however, it is

worth remembering that get f0 is not suited to real-time implemen-

tations (because it relies on dynamic programming for smooth-

ing of pitch contours), and that YIN does not classify frames as
voiced/unvoiced. The MLS+ algorithm is well suited to applica-

tions with both these requirements[5]. More generally, we believe

that it provides an interesting, competitive alternative to two lead-

ing algorithms based on autocorrelation at the pitch period.

5. DISCUSSION

We have shown how to improve a pitch-tracking algorithm based

on multiband least squares fits by incorporating a model of statis-

tical learning into its final decision process. In addition to bench-
marking the algorithm on the TIMIT, Keele, and Edinburgh data

sets, we have also implemented a real-time version of the improved

algorithm on a 1 GHz Macintosh PowerBook G4. This imple-

mentation is being used as a front-end to interactive applications
with voice-driven agents and real-time audiovisual feedback[5].

Finally, while the algorithm described in this paper was conceived

only for clean speech, we are investigating how to apply similar

ideas to noisy environments, polyphonic music, and “cocktail par-
ties” with overlapping speakers. We hope that the ideas in this

paper will ultimately inspire novel approaches to f0 estimation in

these more challenging settings.
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