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ABSTRACT

In this paper we investigate the use of audio and visual
rather than only audio features for the task of speech sep-
aration in acoustically noisy environments. The success of
existing independent component analysis (ICA) systems for
the separation of a large variety of signals, including speech,
is often limited by the ability of this technique to handle
noise. In this paper, we introduce a Bayesian model for
the mixing process that describes both the bimodality and
the time dependency of speech sources. Our experimen-
tal results show that the online demixing process presented
here outperforms both the ICA and the audio-only Bayesian
model at all levels of noise.

1. INTRODUCTION

Robust separation of speech sources [1, 2] has a wide range
of applications from automatic speech recognition to robotics
or indexing. However, the performance of most of these
systems decays rapidly in noisy environments. Recently,
the use of visual features in audio-visual speech separation
(AVSS) systems [3, 4] has shown encouraging results as it
provides a set of unmixed observations independent from
the acoustic noise. The key challenges in AVSS systems
are finding a set of visual features that are highly corre-
lated with the acoustic features and an appropriate model
for the mixing of the audio-visual sources. The AVSS sys-
tem presented in this paper and illustrated in Figure 1 com-
bines a set of visual features extracted from the mouth re-
gion, with the audio samples obtained from a microphone
array and uses a novel statistical model for the mixing pro-
cess. The outline of this paper is as follows. In Section 2
we describe the extraction of the visual features. In Sec-
tion 3 we describe the audio-only source separation models
and in Section 4 we introduce a new mixing model for the
audio-visual sources and compare it with previous models.
In Section 5 we present the experimental results obtained
using these mixing models. In Section 6 we discuss the
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Figure 1: The overall audio-visual speech separation sys-
tem.

conclusions of this work and suggests directions for future
research.

2. THE VISUAL FEATURE EXTRACTION

One key challenge in AVSS is to obtain a set of visual fea-
tures that can describe the acoustic data with high accuracy.
While in lip reading the visual features can be enough for
trained individuals or machines to recognize speech, a per-
fect reconstruction of the audio data from video is impos-
sible even for humans. This is because most of the rele-
vant audio information is contained in the frequency domain
which cannot be estimated from video sequences. Fisher et.
al [3] described a mutual information maximization crite-
rion for audio and visual feature selection that projects both
the audio and visual features in a low-dimensional space.
The method does not allow the audio sequences to be per-
fectly reconstructed from their projections in the lower di-
mensional space, although encouraging separation results
were obtained.

In our system, the extraction of the visual features starts
with a neural network-based face detection system followed
by the detection and tracking of the mouth region using a
set of support vector machine classifiers (Figure 1). We
described this method in detail in [5]. Next, we calculate
the number of pixels within the mouth region for which the
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Figure 2: Audio source signals (a,b), the corresponding
number of pixels within the mouth region for which the
absolute difference at consecutive frames increases a fixed
threshold (c,d), and the visual observations for the above
source signals (e,f).

absolute difference at consecutive frames increases a fixed
threshold (Figure 2c and d). These sequence are next low
pass filtered with a filter of size 9, and thresholded to gen-
erate a binary sequence of visual features. As shown in
Figure 2 the visual features described here can discriminate
well between silence and speech periods. The resulting vi-
sual observations are upsampled to match the frequency of
the audio samples and used together with the audio samples
in the de-mixing process as explained in the next sections.

3. AUDIO-ONLY SOURCE SEPARATION

Let N be the number of sources, T be the number of audio
samples, and M the number of microphones. Then, S =
{st|st = [s1t, . . . sNt]T } and X = {xt|xt = [x1t, . . . xNt]T },
are the sequence of the unmixed sources and mixed audio
sequences from the microphones, respectively. The ICA
method [2] uses a natural gradient technique [6] to maxi-
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Figure 3: The source mixing model for ICA.

mize the mutual information criteria between the sources [1].
The method assumes that the sources are statistically inde-
pendent (Equation 1) and characterized by a non-Gaussian
density function described in Equation 2. The mixing pro-
cess assumes that the mixed signals are a linear combination
of the original source, with no additional noise (Equation 3).
In addition, ICA requires that the number of microphones
equals the number of sources.

P (s1t, . . . , sNt) =
N∏

i=1

P (sit) (1)

P (sit) =
1

exp(sit) + exp(−sit)
(2)

P (xt|st,A) = δ(xt − Ast) (3)

Figure 3 illustrates the ICA mixing model over time as a
Bayesian network where the transparent nodes represent the
microphone observations, the grayed nodes represent the
hidden unmixed sources, and the edges represent the condi-
tional dependencies between observation and source nodes.

3.1. Audio-only Bayesian source separation

The Bayesian mixing model for source separation [7, 8, 9]
relaxes the ICA assumptions by handling noise and differ-
ent number of sources and microphones. The source signals
are modelled using a Gaussian density function with zero
mean and variance Cs (Equation 4) while the observations
are described by a Gaussian density function with variance
Cx (Equation 6). The mixing model used in this paper for
audio-only Bayesian source separation (ABSS) also consid-
ers the first order temporal dependencies for each of the
sources (Figure 4). The temporal dependencies of sit from
its previous sample sit−1 are described by a Gaussian den-
sity function with variance Css and mean bsit−1, where b is
a constant (Equation 5).

P (si0) ∼ N(0,Cs) (4)

P (sit|sit−1) ∼ N(, bsit−1,Css) (5)

P (xit|A, s1t, . . . , sNt) ∼ N(
∑

j

aijsjt,Cx) (6)
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It can be seen that the above equations describe a Kalman
filter with the additional independence assumptions for the
sources. With these constraints, the parameters of the mix-
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Figure 4: The source mixing model for ABSS.

ing model (A, b,Cs,Css and Cx) are learned online using
the maximum likelihood estimation method in [10]. Next,
the unmixed signals are obtained using the constrained Kalman
filter (Equations 4-6)with the learned parameters.

4. AUDIO-VISUAL BAYESIAN SOURCE
SEPARATION

The use of visual features in speech source separation is mo-
tivated by the audio and visual nature of speech and by the
orthogonality of visual speech to the acoustic noise. How-
ever, finding robust statistics that describe the nonlinearity
between audio and visual features remains the key challenge
in audio visual source separation. In [3], the authors derived
a space of maximum mutual information between audio and
visual features and obtained the audio-visual features from
the projections on this space. Sodoyer et al. [4] used a
Bayesian framework to model the joint distribution of the
audio and visual features using a set 32 Gaussian density
functions trained off line from a large number of examples.

In our audio-visual Bayesian source separation (AVBSS)
approach we extend the mixing model described in the pre-
vious section with a set of nodes that describe the audio-
visual observations (Figure 5). The audio-visual observa-
tions zit = [witx1t, . . . , witxMt]T , i = 1 . . . , N ,
t = 1, . . . , T are obtained as the multiplications between
the mixed audio observations xjt, j = 1 . . . , M and the vi-
sual features wit described in Section 2 and illustrated in
Figure 2 e and f. This choice of the audio-visual observa-
tions improves the acoustic silence detection, by allowing a
sharp reduction of the audio signal when no visual speech is
observed. Formally, the audio-visual speech mixing process
is given by the Equations 4- 6, and

P (zit|st) ∼ N(Vist,Cz) (7)

where Vi is a M × N matrix, and Cz is the covariance
matrix of the audio-visual observations. As with the au-
dio only mixing model, the audio-visual Bayesian mixing

model can be seen as a Kalman filter with the source inde-
pendence constraints (Equation 1). In learning the model
parameters, the whitening of the audio observations pro-
vides an initial estimate of the A. The model parameters
A,Vi, bi,Cs,Css,Cz) are learned on-line using the max-
imum likelihood estimation method in [10]. Finally, the
sources are estimated using a constrained Kalman filter and
the learned parameters.
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Figure 5: The source mixing model for AVBSS.

5. EXPERIMENTAL RESULTS

The audio and audio-visual source separation methods de-
scribed in the previous sections were tested using two audio-
visual sequence uttered by different people (“...I would like
to know the weather in Beijing today....Is it going to rain
in the afternoon after 4:00pm? ... What is the forecast for
tomorrow in San Francisco, California... ?” and “...May I
speak to Catherine please?...This is a friend from work...What
time is she returning?...Can I leave a message?...”). The se-
quences were captured in an office environment with a low
level of acoustic noise. To simulate noisy acoustic condi-
tions and a scenario with two microphones the original se-

quences were mixed with a 2 × 2 matrix A =
[

1 2
2 1

]
and

white noise was added to the mixed signals at different sig-
nal to noise ratios (SNR). The online source separation us-
ing the ABSS and AVBSS models were implemented using
the Bayes Net toolbox [11]. Figure 6 shows the input mixed
signals at SNR = =-4db and the output signals obtained us-
ing AVBSS for the source signals showed in Figure 2(a,b).
Figure 7 illustrates the signal to noise and interference ra-
tio (SNIR) of the input signals, ICA, ABSS and AVBSS for
different levels of the input SNR. It can be seen that at all
levels of SNR, the AVBSS outperforms ABSS and ICA con-
firming the intuition that features of visual speech improve
the separation of the input mixed signals.
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Figure 6: An example of the audio input signals at an aver-
age SNR=-4db (a,b) and the separated signals using AVBSS
(c,d).

6. CONCLUSIONS

In this paper we proposed a Bayesian framework for speech
source separation in noisy environments that uses both au-
dio and visual observations. The model for the source mix-
ing process presented in this paper describes the visual ob-
servations and the first order temporal dependencies between
audio samples. The parameters of the mixing process are
learned online using a maximum likelihood technique. The
sources are estimated through a constrained Kalman filter-
ing scheme of the visual observations and mixed audio sig-
nals. The audio visual source separation technique pre-
sented in this paper outperforms the audio only Bayesian
approach and the ICA method for a wide range of input SNR
levels. The success of the current approach relies on the ac-
curate modelling of the source mixing process and the se-
lection of visual observations that can discriminate robustly
between periods of active speech and silence. The perfor-
mance of the proposed approach comes however with a very
high computational complexity cost compared to ICA meth-
ods. A real-time implementation of the proposed algorithm
remains an important issue to be addressed in future work.

We are currently investigating visual features that bet-
ter correlate with the acoustic speech sources and nonlinear
techniques to handle the audio-visual dependencies. Future
research includes audio-visual source separation for scenar-
ios where the number of microphones is smaller than the
number of sources and the extension of the current frame-
work to audio-visual blind deconvolution.
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Figure 7: The signal-to-noise and interference ratio for the
input signals, ICA, audio-only and audio-visual Bayesian
source separation at different levels of signal-to-noise ratio
of the input signals.
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