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ABSTRACT

Non-speech acoustic signals are widely used as the input of
systems for non-destructive testing. In this rapidly grow-
ing field, the signals have an increasing complexity lead-
ing to the fact that powerful models are required. Meth-
ods like DTW and HMM, which are established in speech
recognition, have been successfully used but are not suffi-
cient in all cases. We propose the application of general-
ized structured Markov graphs (SMG). We describe a task
independent structure learning technique which automati-
cally adapts the models to the structure of the test signals.
We demonstrate that our solution outperforms hand-tuned
HMM structures in terms of class discrimination by two
case studies using data from real applications.

1. INTRODUCTION

The recognition of acoustic signals is widely concentrated
on, but not limited to, speech signals. Other biometric data
coming from humans or animals, but also signals emitted by
machines, vehicles, etc., must be analyzed in many cases.
Among these tasks, the non-destructive acoustic analysis
plays an important role. It is based on data recorded dur-
ing the normal operation of a device or in special test runs,
resp.

The classification of these data is frequently performed
using statistical parameters of features which are calculated
from the waveforms in time domain or from its transforms
in spectral or wavelet domains. Such approaches are suffi-
cient in many applications of non-destructive analysis and
lead to useful results. They need, however, special knowl-
edge on the processes generating the acoustic signals and
cannot be applied in more complicated cases which are char-
acterized by a sequential structure of the signal.

It can be easily demonstrated that the structural classi-
fication methods developed for speech recognition can be
applied successfully to structured non-speech signals, too.
In some cases a simple DTW recognizer can be used [1].
In more complicated cases, the concept of hidden Markov
models (HMM) has been applied [2, 3, 4, 5]. Because of the
well-defined sequential structure of a speech signal, hidden
Markov modeling normally uses simple left-right graphs
having nodes (states) that emit feature vectors following a

mixed Gaussian probability density function.
It must be noted, however, that signals appearing with

more sophisticated problems of non-destructive testing do
not have a simple left-right structure in general. Therefore,
it is necessary to reveal the structure of acoustic signals by
automatically learning graphs of a rather general structure.

This paper applies our former work on a general struc-
ture training for speech signals [6] to non-speech signals.
This solution has the following benefits: (a) it is a universal
approach, (b) it is entirely data driven and (c) it requires only
few prior knowledge on the underlying process. The pro-
posed method offers a wide application range in the fields
of process integrated non-destructive testing (PINT), health
monitoring and life cycle prediction.

The paper describes the sequential model, the training
and the classification process. We also describe two case
studies: acoustic quality assessment of gear wheels and
health monitoring of microfluidic valves. The results of the
case studies show a clear improvement of the performance
of our method compared to the HMM approach.

2. TRAINING AND CLASSIFICATION
PROCEDURE

2.1. Stochastic Markov Graphs

As already mentioned, our acoustic models are structured as
Markov graphs which generalize HMM’s (figure 1 shows
an illustration). In contrast to HMMs, the graph topology
becomes an essential object of the training. Such graphs are
sometimes called stochastic Markov graphs (SMG, [7]).

A stochastic Markov graph

G =
{

V, E, {N}, ν(V ), π(E)
}

(1)

consists of a node (or state) set V and a directed edge
set E ⊆ V × V . Through the map ν(V ) : V → {N} a
single n-dimensional Gaussian probability density function
Ni(µi

, Σi) ∈ {N}, which defines a certain area in the sec-
ondary feature space (see 2.2), is assigned to each node. Be-
cause of the arbitrary topology of a SMG, there is no need
to associate mixture Gaussians with the nodes. These may
easily be expressed by an appropriate graph structure. As in
conventional HMMs, each edge carries a transition proba-
bility π(E) : E → IR.
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Fig. 1. 3 state HMM with 3.3 Gaussian mixtures per state
(top) versus 10 state SMG (bottom). The Gaussians of both
models comprise the same number of parameters. The fig-
ures correspond to the models B1 and E in section 3.1.

2.2. Feature Extraction and Transformation

Our classification tasks include acoustic and supersonic sig-
nals in a frequency range from 100 Hz to 250 kHz. We
use a straightforward FFT based feature extraction. In a
subsequent feature transformation step we apply a princi-
pal component analysis (PCA) to the primary FFT feature
vectors thus significantly reducing the feature dimensional-
ity. The secondary feature vectors produced by the feature
transformation should at most comprise 25 vector compo-
nents to allow a robust estimation of Gaussian parameters
with a reasonable amount of training data.

2.3. Training

This section gives a brief overview on the SMG training
procedure. A detailed description and the theoretical foun-
dation can be found in [7, 8].

Training of stochastic Markov graphs includes the esti-
mation of the acoustical parameters (mean vectors µ

i
and

covariance matrices Σi) of the Gaussians Ni and the deter-
mination of the graph topologies {V, E, π(E)}. The train-
ing procedure performs these two tasks simultaneously (see
figure 2 for a block diagram).

In a first stage one SMG model for each class m of ob-
servations is created. The models are initialized by creat-
ing a left-to-right HMM topology with K nodes, assigning
Gaussians to the nodes and initializing their parameters with
a sufficiently large sample of observed feature vectors (see
2.2).

The model training follows the k-means clustering sche-
me. First, we iteratively refine the parameters of the Gaus-
sians using the Viterbi algorithm. We also estimate the tran-
sition probabilities π(E) between the nodes of the SMGs.
After the Viterbi training has converged,we clean the SMGs
removing all edges whose transition probabilities fall below
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Fig. 2. Flowchart of a structural classification system with
feature extraction (top, 2.2), training (right hand side, 2.3)
and classification (left hand side, 2.4). Eventual post pro-
cessing and decision making steps depend on the actual
classification task.

a given threshold. Then we split all Gaussians (and the re-
spective SMG nodes) along the axis of their greatest stan-
dard deviations. The new nodes inherit the transitions to all
predecessors and successors of the original node.

We repeat the process of Viterbi training, cleaning and
state splitting until (a) a given number of SMG nodes is
reached or (b) a given number of nodes is removed during
the cleaning. The latter strategy is motivated by the assump-
tion, that the model should not overfit the training set.

2.4. Classification

Classification with SMGs works exactly the same way as
classification with HMMs. The only – technical – difference
lies in the arbitrary graph topology of the SMGs. For decod-
ing we build a linear graph X from the observation feature
vector sequence X which assigns exactly one feature vector
to each node of the graph. Then we match this graph on the
SMG models Gm of all M classes of observations. As local
distance measure between a feature vector and a Gaussian
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we use the Mahalanobis distance (log-likelihood):

LL(xi|N (vk,m)) = (xi–µ
k,m

)TΣ–1
k,m(xi–µk,m

) (2)

where N (vk,m) = (µ
k,m

, Σk,m) denotes the Gaussian as-
sociated with node vk of SMG m.

A Viterbi search determines the path U∗
m through the

SMG Gm which maximizes the log-likelihood sum for the
observation feature vector sequence:

U∗
m = arg max

U∈Gm

⎡
⎣

|X|∑
i=1

LL(xi|N (ui)

⎤
⎦ (3)

whereN (ui) denotes the Gaussian associated with the node
ui ∈ U and |X | denotes the length of the feature vector se-
quence. We write LL∗(X |Gm) for the log-likelihood of the
best path in model Gm given the feature sequence X .

In case of a multi-class model (M > 1) we now choose
the model m∗ giving the greatest log-likelihood for the ob-
servation as recognition result:

m∗ = arg max
Gm

LL(X|Gm) (4)

Further we use the log-likelihood as a confidence mea-
sure which allows us to determine how similar the observa-
tion and the selected class are.

3. CASE STUDIES

We tested the described classification approach in two tasks,
one from the field of process integrated non-destructive test-
ing and one from the field of health monitoring.

3.1. Process Integrated Nondestructive Testing
The first task consisted of evaluating the quality of sinter el-
ements (gear wheels for passenger car transmissions) and of
identifying errors, particularly cracks. Finally a good-bad-
decision had to be made. The mechanical characteristics of
sinter-metallurgically manufactured elements can be mea-
sured by their vibration response. Different influences such
as cracks, material inhomogeneities or geometrical devia-
tions change the oscillation behavior.

In the experiment the gear wheels were excited with a
defined mechanical pulse from a transmitter. We used the
pulse responses of the inspected items to an excitation with
a 250 kHz SINC-function which were received through two
different ultrasonic sensors as test signals. The signal was
analyzed as described in 2.2.

In our experiment 620 gear wheels were inspected in
this way. We used 20 test signals (10 good and 10 bad)
as training set for the feature statistics and 160 test signals
for the training of a single-class model of “good” items. The
classification experiments were carried out on the remaining
450 test signals. We conducted 3 classification experiments:
In the first two (baseline) experiments we used HMMs with
mixture Gaussians (B1: 3 states, 3.3 Gaussians in average
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Fig. 3. Histograms of log-likelihoods for the three tested
models. All models separate bad probes correctly from
good ones. However, the SMG model E has a noticeably
greater discrimination margin (gray area).

per mixture; B2: 10 states, 1 Gaussian per mixture). Due to
the limited amount of available training data the HMMs had
to be hand-tuned to achieve an optimal trade-off between
number of states and number of Gaussians per mixture. In
the third experiment (E) we used a SMG model with 10
states which was automatically adapted to the structure of
the test signals using the method described in 1. Figure 1
shows the topology of this SMG.

As we only model the “good” items we define a clas-
sification threshold of the log-likelihood sum according to
equation (3). Probes falling below this threshold are clas-
sified as “bad”. All gear wheels were also inspected allow-
ing us determine the classification error rate of the mod-
els. All three experiments worked without any classifi-

Table 1. Results of PINT experiment.

Log-likelihood LL B1 B2 E
Threshold good–bad -57.0 -50.0 -59.0
Classification error 0.0 % 0.0 % 0.0 %
Good class minimum -41.7 -34.3 -42.2
Good class average -32.6 -24.9 -32.6
Good class std. deviation 1.9 2.1 1.9
Bad probes maximum -61.7 -54.0 -64.7
Discrimination Margin 20.0 19.7 22.5

cation errors. However, experiment E achieved a signifi-
cantly higher (16% relative) discrimination, in terms of log-
likelihood difference, between the good and bad samples
with approximately the same means and standard deviations
of the log-likelihoods of the good samples (table 1).
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3.2. Health Monitoring

In the second task we accomplished a life span analysis of
pneumatic valves. We attached eight new valves, which
were opened and closed with a frequency of approximately
1 Hz cyclically, on a board. Compressed air with a pressure
of 0.5 bar served as flow medium. The long time investiga-
tion took place until the valves did not work correctly any
longer.

Mechanical changes, which occur during the aging pro-
cess, do effect the switch noise of the valves. Therefore, a
sound recording of the valve during its switching process
can be used to evaluate the valve’s condition. The goal of
the experiment is a remaining useful life estimation in order
to detect a forthcoming failure.

On behalf of a well-known manufacturer of valves a
piezoelectric sensor system has been developed at our in-
stitute. The sensor element records the impact sound of the
valve and consists of a Piezo ring which is, as a washer,
wedged under the retaining screw of the valve head. Minia-
turized hybrid electronics performing signal preprocessing
is situated directly besides this sensor. A CompactPCI com-
puter with integrated DSP board serves as control unit and
realizes control, signal processing and data acquisition.

The manufacturer guarantees a lifetime of about 10 mil-
lion switching cycles. The long time investigation has been
run since the first of August 2003. We recorded one test sig-
nal every 2500 switching cycles. From the 4000 recorded
test signals we used the first 600 to train individual single-
class models of the “new”-conditions of all valves in the
test. The remaining 3400 test signals were used to test the
models. We conducted similar classification experiments
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Fig. 4. Log-likelihoods of good models given the test sig-
nals of one selected valve with increasing number of switch-
ing cycles.

as described in 3.1: B1: HMM with 10 states and 16 Gaus-
sians per mixture; B2: HMM with 20 states and 2 Gaus-
sians per mixture. As in the first task, the number of states
and Gaussian mixtures of the HMM’s were hand-tuned. By

the SMG training procedure (E) we obtained a model with
37 states which is comparable to B1 and B2 in terms of the
number of Gaussian parameters. As figure 4 shows, all three
classificators again separated the new from the used state of
the valves well. The peak of the log-likelihood value around
8 million switching cycles indicates approaching the end
of the valve’s lifetime. Also in this task the SMG model
performs better than the HMMs even though the improve-
ment is here not as significant as in the PINT experiment.
However, it must be noted that the good performance of the
HMMs was achieved by hand-tuning of their structure while
the SMG structure was obtained by our automatic procedure
without any hand tuning.

4. CONCLUSION

We successfully applied an SMG based classification tech-
nique to different types of acoustic and supersonic signals
from the field of non-destructive testing. We showed that a
structured stochastic model of the signals can be automat-
ically learned from a test set by a task independent proce-
dure and that the obtained models outperform hand-tuned
HMMs. In our future work we will apply the introduced
classification technique to a greater variety of tasks.

5. REFERENCES

[1] P. Holstein, M. Koch, D. Hirschfeld, R. Hoffmann, D. Bader,
and K. Augsburg, “A strategy for signal recognition under
adverse conditions,” in Proc. 32nd Conf. Internoise, 2003,
Jeju, Korea.

[2] D. Zhang, Y. Zeng, X. Zhou, and Cheng Y., “The pattern
recognition of non-destructive testing based on HMM,” in
Proc. 4th World Congress on Intelligent Control and Automa-
tion (Cat. No.02EX527), 2002, vol. 3, pp. 2198–2202, Piscat-
away, NJ, USA.

[3] P. Baruah and R. B. Chinnam, “HMMs for diagnostics and
prognostics in machining processes,” in Proc. 57th Meeting
of the Society for Machinery Failure Prevention Technology,
2003, pp. 389–398, Virginia Beach, USA.

[4] A. R. Taylor and S. R. Duncan, “A comparison of techniques
for monitoring process faults,” in Proc. Conf. Control Systems,
2002, pp. 323–327, Stockholm, SE.

[5] H. Y. K. Lau, “A hidden Markov model-based assembly
contact recognition system,” Mechatronics, vol. 13(8-9), pp.
1001–1023, 2003, ISSN 0957-4158.

[6] M. Eichner, M. Wolff, and R. Hoffmann, “A unified approach
for speech synthesis and speech recognition using stochastic
Markov graphs,” in Proc. 6th Int. Conf. Spoken Language
Processing (ICSLP), 2000, vol. 1, pp. 701–704, Beijing, PR
China.

[7] F. Wolfertstetter and G. Ruske, “Structured Markov models
for speech recognition,” in Proc. ICASSP, 1995, pp. 544–547,
Detroit.

[8] M. Eichner, S. Ohnewald, M. Wolff, and R. Hoffmann,
“Speech synthesis using Stochastic Markov Graphs,” in Proc.
ICASSP, May 5–7 2001, Salt Lake City, UT, USA.

V - 656

➡ ➠


