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ABSTRACT

In this paper the problem of co-channel speech separation
for convolutive mixtures is considered where visual cues
from one of the speakers is available as side information.
The visual cues from the one speaker in the two speaker
speech separation are used to estimate the spectral content
of the speech and this spectral estimate is in turn used to
constrain the solution of the coupling reconstruction filters
in the convolutive mixture. The preliminary experimental
results show that good performance in speech separation is
obtained for our limited case study of visual cues obtained
from the spoken numbers of “one” thru “four”.

1. INTRODUCTION

Speech is bimodal with an intrinsic coherence between the
audition of speech (what we hear) and what is visually ob-
served in the position/motion of the speaker’s lips [1]. For
the problem of speech separation, we can take advantage of
this coherence of acoustic and visual speech by incorporat-
ing visual cues such as lip features as side information for
the speech separation [2, 3].

In this paper we consider the 2 × 2 speech separation
problem for convolutive coupling mixtures where the diffi-
culty is in the choice of decorrelation filters. In general, the
choice of decorrelation filter is not unique so its selection
for an appropriate signal separation must be constrained to
suit the characteristics of the observed signals [4]. We show
an approach of using spectral matching [4] by estimating
the acoustic spectrum of the speakers from their lip motion.

2. SPEECH SEPARATION PRELIMINARIES

Consider the 2 × 2 speech separation problem where two
co-existent and independent speech sources are recorded by
two spatially separate microphones. The observed signals
y1(t) and y2(t) by the two microphones are given as [4, 5]

y1(t) = s1(t) + H12(s2(t)) (1)

y2(t) = s2(t) + H21(s1(t)) (2)

where s1(t) and s2(t) are the speech signals observed at the
corresponding microphone in the absence of the competing
speech signal, and the systems H12 and H21 represent the
coupling effects between the two channels.

To eliminate the coupling effect between the channels,
we can reconstruct the source signals using the follwoing
decoupling filter [4]

r1(t) = y1(t) − G12(r2(t)) (3)

r2(t) = y2(t) − G21(r1(t)) (4)

where it can easily be verified that if

G12 = H12, G21 = H21 (5)

then r1(t) = s1(t) and r2(t) = s2(t). Hence, the signals
s1(t) and s2(t) are separated. Similarly, if

G12 = 1/H21, G21 = 1/H12 (6)

and H12 and H21 are invertible, then r1(t) = H12(s2(t))
and r2(t) = H21(s1(t)). In this case, s1(t) = y1(t)− r1(t)
and s2(t) = y2(t) − r2(t). For either case, the observed
source signals s1(t) and s2(t) are completely recovered.

The difficulty in recovering s1(t) and s2(t) from the
convolutive coupling mixture in (1) and (2) is the H12 and
H21 are typically unknown so G12 and G21 must be blindly
estimated. The approach suggested in the following sec-
tions makes this estimation of G12 and G21 only partially
blind by using lip position/motion information of at least
one speaker to constrain the solution for determining G12

and G21. This constraint will also include that the speech
sources are independent and statistically uncorrelated.

3. LIP FEATURE EXTRACTION

As indicated in [4], if detailed spectral properties of s1(t)
and s2(t) are known, then constraining the solution for the
frequency response G12(ω) of G12 and G21(ω) of G21 by
using spectral matching can be done. To obtain an estimate
of the spectral properties of the speech, we propose using
the coherence between lip position/motion visual cues as
side information.

V - 6450-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



Fig. 1. Geometric feature points on the lips.

To capture the visual cues v(t), the lip feature extraction
approach presented in [6] was used where motion, colour,
and edge information are combined in a Markov random
field (MRF). Then Bayesian labeling within the MRF is
used to segment lip/non-lip regions. In this initial study of
audiovisual speech separation, after the lip/non-lip region
segmentation three lip features are extracted as illustrated
in Fig. 1, which include the outer lip height H, the inner lip
height h, and the corner-to-corner mouth width W. Future
studies will look more extensively at lip contours and active
shape modeling such as in [7].

The visual speech used for this study was small and con-
sists of only one speaker repeating the numbers from “one”
to “ten” over a set of 30 iterations. It should be noted that
only one speaker was used in this initial study so that rea-
sonably reliable mapping of visual cues to phonemes could
be done. In pratice, with larger audiovisual databases for
different speakers mean error rates for visual speech recog-
nition have been quoted as poor as 40.3% [7].

To model the visual cues, a left-right hidden Markov
model (HMM) with continuous density was used that
mapped visual cues to word structures. The HMM was de-
signed to have 21 states which includes a state for silence
periods. For training the HMM, 25 iterations from the data
set were used and the last five kept for testing. The HMM
was trained using difference vectors from the extracted lip
features in Fig. 1 for sequential frames spaced 25 ms apart.
The identified word structures resulting from the HMM can
then be used to index into a database of prototypical spectra
Pv1(ω) for that particular phoneme/word structure for the
speaker. Of course, since we have limited our study to one
speaker we do not have the wider range of spectra normally
associated with different speakers. These spectral estimates
can now be used for the spectral matching speech separation
technique discussed next.

4. SPECTRAL MATCHING

After detailed spectral estimates of the acoustic speech
are obtained using the coherence between lip features and

speech, the next step proposed is to perform the speech sep-
aration by spectral matching as outline in [4]. In the two-
speaker case, if visual cues v1(t) and v2(t) are available
for both competing speakers, then the spectral matching
method of Weinstein et al. [4] can be applied directly using
the spectral estimates of s1(t) and s2(t). The more likely
scenario though would be to have the visual cues v1(t) for
only one speaker while v2(t) are unknown. Handling these
cases is addressed in this section.

The spectral matching approach to speech separation [4]
can be described as follows. To start, the frequency response
for the system described by (1) and (2) can be written as

H(ω) =
[

1 H12(ω)
H21(ω) 1

]
(7)

where H12(ω) and H21(ω) are the frequency responses for
the systems H12 and H21, respectively. The reconstruction
filter described by (3) and (4) is the inverse of H(ω), which
can be written as

H−1(ω) =
1

1 − G12(ω)G21(ω)

[
1 −G12(ω)

−G21(ω) 1

]
(8)

where G12(ω) and G21(ω) are estimates of H12(ω) and
H21(ω), respectively, and for the inverse of H(ω) to exist
we must have

1 − G12(ω)G21(ω) �= 0 ∀ω. (9)

If H(ω) is invertible, (i.e., (9) must hold) then in terms
of power spectra the reconstruction filter can be described
by

[
Pr1r1(ω) Pr1r2(ω)
Pr2r1(ω) Pr2r2(ω)

]
=

1
|1 − G12(ω)G21(ω)|2

·
[

1 −G12(ω)
−G21(ω) 1

] [
Py1y1(ω) Py1y2(ω)
Py2y1(ω) Py2y2(ω)

]

·
[

1 −G∗
21(ω)

−G∗
12(ω) 1

]
(10)

where Prirj
(ω)i, j = 1, 2 is the auto- and cross-spectra of

r1(t) and r2(t), and Pyiyj
(ω)i, j = 1, 2 are the auto- and

cross-spectra of y1(t) and y2(t). Multiplying out (10) gives

|1 − G12(ω)G21(ω)|2Pr1r1(ω) =
Py1y1(ω) − G12(ω)Py2y1(ω) − G∗

12(ω)Py1y2(ω)

+ |G12(ω)|2Py2y2(ω) (11)

|1 − G12(ω)G21(ω)|2Pr2r2(ω) =
Py2y2(ω) − G21(ω)Py1y2(ω) − G∗

21(ω)Py2y1(ω)

+ |G21(ω)|2Py1y1(ω) (12)
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|1 − G12(ω)G21(ω)|2Pr2r1(ω) =
Py2y1(ω) − G21(ω)Py1y1(ω) − G∗

12(ω)Py2y2(ω)
+ G21(ω)G∗

12(ω)Py1y2(ω) (13)

where the unknowns are G12(ω), G21(ω), and Prirj
(ω).

If visual cues v1(t) and v2(t) are observed for the two
speakers, then we can estimate the reconstruction auto-
spectra as

Pr1r1(ω) = α2
1Pv1v1(ω) ≈ Ps1s1(ω) (14)

Pr2r2(ω) = α2
2Pv2v2(ω) ≈ Ps2s2(ω) (15)

directly from the visual cues as well as derive estimates for
the cross-spectra as

Pr1r2(ω) = α1α2Pv1v2(ω) ≈ Ps1s2(ω) (16)

Pr2r1(ω) = α1α2Pv2v1(ω) ≈ Ps2s1(ω). (17)

The scaling factors α1 and α2 are required since the
spectral estimates from the visual cues v1(t) and v2(t) do
not include the static gain/attenuation of the real sources
s1(t) and s2(t) (i.e., we cannot know how loud the speakers
are talking from their lip motion). Using the estimates for
Pr1r1(ω) and Pr2r2(ω), we solve for G12(ω) and G21(ω)
using (11)-(13) as described in [4].

There may be scenarios where visual cues are available
for only one speaker, say for source s1(t) with visual cues
v1(t), and not for the competing speaker. In this scenari-
o, we can still make the spectral estimate in (14) but the
visual cues v2(t) to estimate Pr2r2(ω) (along with the cross-
spectra Pr1r2(ω) and Pr2r1(ω)) are not available.

To handle the case when visual cues are available for
only one speaker, we consider the power spectra represen-
tation for (1) and (2) which can be expressed as[

Py1y1(ω) Py1y2(ω)
Py2y1(ω) Py2y2(ω)

]
=

[
1 H12(ω)

H21(ω) 1

]

·
[
Ps1s1(ω) Ps1s2(ω)
Ps2s1(ω) Ps2s2(ω)

] [
1 H∗

21(ω)
H∗

12(ω) 1

]
(18)

where Psisj
(ω)i, j = 1, 2 is the auto- and cross-spectra of

s1(t) and s2(t). To simplify (18), we make the assumption
that the sources s1(t) and s2(t) are zero-mean, statistically
uncorrelated wide-sense stationary random processes such
that the cross-correlation is

E{s1(t)s∗2(t − τ)} = 0 ∀τ (19)

where E{·} stands for expectation. Using this assumption,
the cross-spectra of the speech sources are Ps1s2(ω) = 0
and Ps2s1(ω) = 0.

Multiplying out (18) with Ps1s2(ω) = 0 and Ps2s1(ω) =
0, we obtain

Py1y1(ω) = Ps1s1(ω) + H12(ω)H∗
12(ω)Ps2s2(ω) (20)

and solving for Ps2s2(ω) gives

Ps2s2(ω) =
Py1y1(ω) − Ps1s1(ω)

H12(ω)H∗
12(ω)

(21)

Substituting (14) into (21), and letting β(ω) ≈ H12(ω)
since H12(ω) is unknown gives

Pr2r2(ω) = Ps2s2(ω) ≈ Py1y1(ω) − α2
1Pv1v1(ω)

β2(ω)
(22)

For strictly positive auto-spectra, since Pv1v1(ω) must nec-
essarily lie under Py1y1(ω) we can bound α1 with

0 < α1 ≤ min
∀ω

√
Py1y1(ω)
Pv1v1(ω)

. (23)

The function β(ω) is chosen to best estimate the un-
known frequency response H12(ω) the couples s2(t) to
y1(t) and may be chosen as a piece-wise function or as a
constant. If β(ω) is chosen as a constant, then the esti-
mate of Ps2s2(ω) in (22) reduces to an instantaneous cou-
pling. When Ps2s2(ω) is used in conjunction with Ps1s1(ω)
in (11)-(13), then the convolutive coupling mixture of (1)
and (2) is still being addressed regardless that the estimate
for Ps2s2(ω) was made for an instantaneous coupling.

5. EXPERIMENTS

To test the proposed audiovisual speech separation system,
we simulated a scenario with two microphones and one
video camera by separately observing one speaker with one
microphone and the camera, and then another speaker with
just the microphone. Once the clean data was captured, the
scenario simulated was for two microphones separated by
120 cm with the two speakers placed at a distance of 30 cm
perpendicular to the plane of the microphones. The cross-
coupling transfer functions where simulated as unity gain
single pole systems with poles at z = 0.7 for the transfer
function H12(z) and z = 0.6 for H21(z).

Using the simulation setup described, example input
acoustic speech plots are shown in Fig. 2 where Fig. 2(a)
and Fig. 2(b) show the clean speech signals as observed for
s1(t) and s2(t), respectively, and Fig. 2(c) shows the signal
mixture y1(t) for microphone #1. The speech in Fig. 2(a) is
for the speaker of interest s1(t), with associated video signal
v1(t), speaking the numbers “one” to “four”. The speech
shown in Fig. 2(b) is for the competing speaker s2(t) and is
a sentence from the TIMIT speech database. Note that no
visual cues are available for s2(t).

With the simulation setup complete, the speech sepa-
ration was performed by first estimating the auto-spectra
Pr1r1(ω) = Pv1v1(ω) from the visual cues v1(t) and using
this estimate as described in Sec. 4 to solve for G12(ω) and
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Fig. 2. (a) Speech source s1(t), (b) speech source s2(t) of
competing speaker, and (c) mixed signal y1(t).

G21(ω). Performing the speech separation with the filters
G12(ω) and G21(ω) resulted in r1(t) ≈ s1(t) as shown in
Fig. 3(a) and r2(t) ≈ s2(t) as shown in Fig. 3(b). We can
see that a reasonably good speech separation has occurred
under these simulation conditions.

The speech separation shown in Fig. 3 is quite promis-
ing, but note that these results were obtained when a very
limited set of word structures were used for the visual cues
v1(t) (namely just the word structures for the spoken num-
bers “one” to “ten” from one speaker). As indicated, visual
speech recognition is generally much poorer with mean error
rates of current techniques of around 40.3% [7]. Even with
poor visual speech recognition in general, our experimental
results still prove promising since if we have the scenario
where the speakers are stationary, then the decoupling fil-
ters G12(ω) and G21(ω) can be estimated over time with
increasing accuracies as time progresses.

6. CONCLUSIONS

We have shown how visual cues of a speaker can be used as
side information for acoustic speech separation by spectral
matching. The 2 × 2 speech separation problem was con-
sidered where visual cues for only one speaker are available.
While this initial study considered training a HMM on the
visual cues of only a single speaker, it is shown that good
separation results are obtained and that if an HMM trained
with a more general set of visual cues from a cross section
of the population, that as long as the speakers are stationary
that the reconstruction filters can be obtained with improved
performance over time.
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Fig. 3. Separated speech for (a) r1(t) and (b) r2(t).
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