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ABSTRACT

In this paper, a novel strategy for combining general and user-
dependent knowledge in a multimodal biometric verification sys-
tem is presented. It is based on SVM classifiers and trade-off coef-
ficients introduced in the standard SVM training problem. Experi-
ments are reported on a bimodal biometric system based on finger-
print and on-line signature traits. A comparison between three fu-
sion strategies, namely user-independent, user-dependent and the
proposed adapted user-dependent is carried out. As a result, the
suggested approach outperforms the former ones. In particular, a
highly remarkable relative improvement of 68% in the EER with
respect to the user-independent approach is achieved. The severe
and very common problem of training data scarcity in the user-
dependent strategy is also relaxed by the proposed scheme, result-
ing in a relative improvement of 40% in the EER compared to the
raw user-dependent strategy.

1. INTRODUCTION

Automatic extraction of identity cues from personal traits (e.g.,
fingerprints, speech, or face images) has given raise to a particular
branch of pattern recognition (biometrics) where the goal is to infer
identity of people from personal data [1]. The increasing interest
on biometrics is related to the important number of applications
where a correct assessment of identity is a crucial point.

Biometrics provides a way to establish an identity based on
’who you are’, rather than by ’what you possess’ or ’what you
know’ [2]. This concept not only ensures enhanced security but
also avoids the need to remember and maintain multiple pass-
words.

Previous studies have shown that the performance of any sin-
gle trait verification system can be improved by unimodal (or
monomodal) fusion, i.e., the combination of several verification
strategies applied on the same input data [3]. Even greater verifi-
cation performance improvement can be expected through the use
of multiple biometric characteristics [4]. The reader is referred to
[4, 5, 6, 7] for some works on multimodal fusion.

2. MOTIVATION

The work presented in this paper is motivated by two general ideas
whose benefits have been demonstrated in previous work:
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User-specific parameters: Recent advances in multimodal bio-
metric verification systems have been accomplished by
learning user-specific parameters [2, 7].

Adaptive learning: The adaptive learning framework offers a
way to incorporate new or specific data into existing classi-
fication structures and combine them in an optimal manner
[8, 9].

Regarding user-specific parameters, some related works are:
i) threshold selection and degree of importance assigned to each
of the biometric traits, as described in [2]; and, specifically re-
lated to this work, ii) the trained user-dependent fusion approach
formulated in [7] whose experimental results showed a significant
improvement in the system performance, and hence, provides a
promising starting point for this work.

As far as adaptive learning, it is generally known that, unfortu-
nately, in pattern recognition applications we rarely have the com-
plete knowledge about the structure of the problem. In a typical
case we merely have some general knowledge about the situation,
together with a number of training data, which are particular rep-
resentatives of the patterns we want to classify or, in this case,
fuse by means of a classifier. In many cases, the amount of avail-
able training data is not sufficient and representative enough to
guarantee good parameter estimation/learning and generalization
capabilities.

To cope with this lack of robustness derived from partial knowl-
edge of the structure of the problem, the use of robust adaptive
decision/fusion strategies based on ”all” the available information
have been proposed [8]. As an example of the underlying phi-
losophy, we may consider the fact that general information of the
problem (such as user or task independent features) can constitute
a rich source of information and a valuable starting point for user-
specific recognition problems.

Based on the two general ideas above mentioned, the aim of
this paper is to provide a specific framework for user-dependent
multimodal biometric fusion incorporating the general knowledge
provided by pooling user-independent data.

3. MULTIMODAL FUSION SCHEME

The proposed fusion scheme is derived from user-independent and
user-dependent fusion strategies [7] based on SVM classifiers [10].
In first place, the notation is established and a brief description of
the above mentioned trained fusion approaches is given. Then, the
proposed fusion scheme is presented.
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3.1. SVM-based multimodal fusion

Given a multimodal biometric verification system consisting of R
different unimodal systems r = 1, . . . , R, each one computes a
similarity score xr ∈ R between an input biometric pattern and the
enrolled pattern of given claimant. Let the similarity scores, pro-
vided by the different unimodal systems, be combined into a mul-
timodal score x = [x1, . . . , xR]T . The design of a trained fusion
scheme consists in the estimation of a function
f : R

R → R based on empirical data so as to maximize the
separability of client {f(x)|client attempt} and impostor
{f(x)|impostor attempt} fused score distributions.

Formally, let the training set be X = (xi, yi)
N
i=1 where N

is the number of multimodal scores in the training set, and yi ∈
{−1, 1} = {Impostor, Client}. The principle of SVM relies on a
linear separation in a high dimension feature space H where the
data have been previously mapped via Φ : R

R → H; X → Φ(X),
so as to take into account the eventual non-linearities of the prob-
lem [10]. In order to achieve a good level of generalization capa-
bility, the margin between the separator hyperplane{

h ∈ H| 〈w,h〉
H

+ w0 = 0
}

(1)

and the mapped data Φ(X) is maximized (where 〈· , ·〉
H

denotes
inner product in space H, and (w ∈ H, w0 ∈ R) are the parame-
ters of the hyperplane). The optimal hyperplane can be obtained as
the solution of the following quadratic programming problem [10]:

min
w,w0,ξ1,...,ξN

(
1

2
‖w‖2 + C

N∑
i=1

ξi

)
(2)

subject to

yi(〈w, Φ(xi)〉H
+ w0) ≥ 1 − ξi, i = 1, . . . , N (3)

ξi ≥ 0, i = 1, . . . , N (4)

where slack variables ξi are introduced to take into account the
eventual non-separability of Φ(X) into H and parameter C is a
positive constant that controls the relative influence of the two
competing terms.

The optimization problem in (2), (3) and (4) is solved using
the Wolfe dual representation [11]:

max
α1,...,αN

(
N∑

i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK(xi,xj)

)
(5)

subject to
0 ≤ αi ≤ C, i = 1, . . . , N
N∑

i=1

αiyi = 0
(6)

where the introduction of the kernel function
K(xi,xj) = 〈Φ(xi), Φ(xj)〉H

avoids direct manipulation of the
elements of H. In particular, a Radial Basis Function (RBF) ker-
nel K(xi,xj) = exp(−‖xi − xj‖

2
/
2σ2) has been used for the

reported experiments.
In [7], the fused score sT of a multimodal test pattern xT is

defined as follows

sT = f(xT ) = 〈w∗, Φ(xT )〉
H

+ w∗

0 (7)

which, applying the Karush-Kuhn-Tucker (KKT) conditions to the
problem in (2), can be shown to be equivalent to the following
sparse expression

sT = f(xT ) =
∑

i∈SV

α∗

i yiK(xi,xT ) + w∗

0 (8)

where (w∗, w∗

0) is the optimal hyperplane, (α∗

1, . . . , α
∗

N ) is the
solution to the problem in (5), (6) and SV = {i|α∗

i > 0} is the set
of support vectors. w∗

0 is obtained from the solution to the problem
in (5), (6) by using the KKT conditions (see [11] for more details).

As a result, the training procedure in (5), (6) and the testing
strategy in (8) are obtained for the problem of multimodal fusion.

3.2. User-independent and user-dependent fusion

In the user-independent case, the training set XUI = (xi, yi)
NUI
i=1

includes multimodal scores from a number of different clients and
the obtained fusion rule fUI(x) is applied at the operational stage
regardless of the claimed identity.

Regarding the user-dependent case, a different fusion rule
fj(x) is obtained for each client enrolled in the system
j = 1, . . . , M by means of a training set comprising only mul-
timodal scores of the specific client Xj . At the operational stage,
the fusion rule fj(x) of the client j being claimed is applied.

3.3. Adapted user-dependent strategy

A user-dependent fusion scheme trading off the general knowledge
provided by a user-independent training set XUI = (xi, yi)

NUI
i=1

and the user specificities provided by a user-dependent training set
Xj = (xi, yi)

NUI+Nj

i=NUI+1
is proposed here. The suggested training

procedure for client j is stated as follows:

min
w,w0,ξ1,...,ξNUI+Nj

(
1

2
‖w‖2 + CUI

NUI∑
i=1

ξi + CUD

NUI+Nj∑
i=NUI+1

ξi

)

(9)
subject to

yi(〈w, Φ(xi)〉H
+ w0) ≥ 1 − ξi, i = 1, . . . , NUI + Nj (10)

ξij ≥ 0, i = 1, . . . , NUI + Nj (11)

This can be seen as a user-dependent fusion scheme adapted from
user-independent information. Sequential algorithms for the solu-
tion of the SVM optimization problem in (2), (3), (4) have been
already proposed [9], and can be adjusted to deal with the problem
in (9), (10), (11), first constructing the user-independent solution
and then refining it by incorporating the user-dependent informa-
tion. Nevertheless, in the present work, a simpler batch mode im-
plementation has been used.

Following the derivation in [11], it can be shown that the dual
representation of the problem in (9), (10), (11) is as follows:

max
α1,...,αNUI+Nj

(
NUI+Nj∑

i=1

αi −
1

2

NUI+Nj∑
i,k=1

αiαkyiykK(xi,xk)

)

(12)
subject to

0 ≤ αi ≤ CUI , i = 1, . . . , NUI

0 ≤ αi ≤ CUD, i = NUI + 1, . . . , NUI + Nj

NUI+Nj∑
i=1

αiyi = 0

(13)

For the experiments in the next section, the problems in (5),
(6) and (12), (13) have been solved by using an interior point opti-
mization solver.
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4. EXPERIMENTS

Some experiments comparing the fusion schemes above described
on a bimodal biometric verification system consisting of finger-
print and on-line signature subsystems have been carried out.
Monomodal systems are first introduced providing references for
further details. Then, the database and the experimental procedure
are described. Finally, results are summarized.

4.1. Baseline monomodal systems

Individual verification systems with standard performance (param-
eters have not been optimized) have been intentionally used be-
cause it makes the comparison of subsequent fusion strategies eas-
ier. In particular, the experiments have been carried out on a bi-
modal biometric verification system including the minutiae-based
fingerprint verification subsystem described in [12] and the on-line
signature verification subsystem based on temporal functions and
Hidden Markov Models reported in [13].

4.2. Database description

50 users have been randomly selected from the MCYT Bimodal
Database including fingerprint and on-line signature samples [14].
The following training and testing procedures for monomodal sys-
tems have been established:

Training: i) Fingerprint: Each client’s index finger has been rep-
resented with one high-control minutiae pattern; ii) Signa-
ture: Each signature has been modelled with 6 samples.

Testing: i) Clients: 4 samples of each trait (fingerprint and sig-
nature) have also been selected for tests; ii) Impostors: 3
different impostors (skilled forgeries in case of signature)
for each client have been considered and, for each impos-
tor, 5 samples have been selected.

Consequently, the subcorpus for the fusion experiments consists
of 50 × 4 = 200 client, and 50 × 3 × 5 = 750 impostor bimodal
scores. Individual verification performance of the monomodal sub-
systems on the data set are depicted in Fig. 1 as DET curves.
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Fig. 1. Verification performance of baseline monomodal systems

4.3. Multimodal experimental procedure

Several methods have been described in the literature in order to
maximize the use of the information embedded in the training sam-
ples during a test [11]. For error estimation in multimodal authen-
tication systems, variants of jackknife sampling using the leave-
one-out principle are a common choice [4, 7]. In this work, and

depending on the experiment at hand, a variant of bootstrap sam-
pling has been used:

User-Independent Fusion: Bootstrap data sets have been created
by randomly selecting M users from the training set with
replacement. This selection process have been indepen-
dently repeated 200 times to yield 200 bootstrap data sets.
Each data set is used then to generate a user-independent
fusion rule. Testing is finally performed on the remaining
users not included in each bootstrap data set.

User-Dependent Fusion: For each user, 50 bootstrap data sets
have been created randomly selecting with replacement (and
forcing at least one sample in each class client/impostor)
N = 10 samples. For each user and bootstrap data set, a
different fusion rule is constructed and testing is performed
on the remaining samples not included in the bootstrap data
set.

Adapted User-Dependent Fusion: Bootstrap sampling of users
is performed as in the user-independent case yielding 200
user-independent bootstrap data sets (UIBD). Multimodal
scores of the remaining users not included in each UIBD
are then sampled as in the user-dependent case. This yields
50 user-dependent bootstrap data sets per UIBD (which is
used for training the user-dependent fusion rule) and per
client not included in the UIBD. Testing is performed on
the remaining samples not included in each user-dependent
bootstrap data set.

4.4. Results

Results from a subset of experiments comparing user-independent,
user-dependent and the proposed adapted user-dependent fusion
strategies are summarized in Fig. 2.
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Fig. 2. Equal error rates of the studied fusion schemes

In Fig. 2 (a), verification performance of the bimodal authen-
tication system is shown for an increasing number of clients in the
fusion rule training set. In the case of user-independent fusion, er-
ror rate drops from 4.33% (M = 1 client for training) to 1.34%
(M = 49). For the adapted user-dependent scheme (CUI = 100
and CUD = 100), the error rate decreases from 1.19% to 1.09%.
On the other hand, the raw user-dependent fusion strategy goes
down to 0.72% EER.

The main result of the present work is shown in Fig. 2 (b).
In this case, M = 49 and CUD = 100 are fixed and CUD/CUI

is varied (hence trading off the influence of the user-independent
and user-dependent information for training the fusion rule). As a
result, a minimum of 0.43% EER is found for CUD/CUI = 1000.
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Fig. 3. Training/testing scatter plot and decision boundaries for the studied fusion schemes

In order to visualize the discriminative capability of SVM clas-
sifiers in the above described fusion approaches, client and im-
postor maps of signature and fingerprint scores before fusing are
plotted in Fig. 3. In particular, three different data sets of the boot-
strap error estimation process are depicted from left to right. User-
independent, user-dependent and adapted user-dependent decision
boundaries (i.e., multimodal combined score s = f(x) = 0) have
been included. The graphical effect of the latter approach being
transformed from the user-independent to the user-dependent one
is highly remarkable.

5. CONCLUSIONS

A user-dependent fusion scheme based on the general knowledge
provided by pooling user-independent data has been introduced.
This scheme is based on SVM classifiers and trade-off coefficients
introduced in the standard SVM training problem. Appropriate
selection of these parameters leads to an adapted user-dependent
fusion scheme outperforming the raw user-dependent strategy due
to the scarcity of training data for the later strategy.

In particular, and considering 3.03% EER signature and 3.17%
EER fingerprint verification systems, it has been shown that user-
independent and user-dependent multimodal fusion schemes re-
duced the EER down to 1.34% and 0.72%, respectively. The
proposed adapted user-dependent strategy performed even better,
reducing the EER down to 0.43%. As a result, the main prob-
lem of the user-dependent trained fusion approach, namely the
training data scarcity, has been relaxed by the inclusion of user-
independent information.

Encouraging results of the proposed user-dependent approach
motivate further research in order to exploit user specificities at the
fusion stage of multimodal biometric verification systems.
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