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ABSTRACT
A complete signal processing strategy is presented to detect and
precisely recognize tongue movement by monitoring changes in
airflow that occur in the ear canal. Tongue movements within the
human oral cavity create unique, subtle pressure signals in the ear
that can be processed to produce commands signals in response to
that movement. Once recognized, said movements can in turn be 
used in human-machine interface applications such as
communicating with a computer and controlling mechanical
devices.  The processing strategy includes pressure signal 
acquisition using a microphone inserted into the ear-canal, PSD 
analysis to design bandpass filters to reject pressure changes due 
to sources other than tongue movements, start- and end-point
detection in the waveforms through cross-correlation, signal
estimation, and the design and evaluation of parametric and non-
parametric signal classifiers. The non-parametric signal classifiers
include non-linear alignment classifiers and matched filters, while 
the parametric classification involves a multivariate Gaussian
classifier using AR model parameters.  The complete strategy is
tested on 4 tongue actions: touching the tongue to the left and
right corners of the mouth, and to the top and bottom center of the 
mouth.  Through extensive experiments, it is shown that the
pressure signals due to tongue movements are distinct and can be
detected with over 97% accuracy.  It is thus concluded that the
unique strategy will make hands-free control of devices using
tongue movements a practical reality.
This work is supported by a NIH Phase I SBIR Research grant 
1R43HD042367-01A1

1. INTRODUCTION 
Although there is a well-recognized need in society for effective
machine interface mechanisms that will enable the physically
impaired to be more independent, much of the technology
developed towards this goal still fails to meet their specific needs.
At present, the majority of existing systems may be classified as
mechanical-input devices; i.e. the user physically moves a part of
a device in order to generate a control input signal.  Examples of 
such systems include hand-operated joysticks and the use of head
or chin movements to move a lever whose motion is translated
into control commands. Systems of this nature require constant 
bodily movement that can be tiring and uncomfortable to the user,
while regular use can also cause repetitive motion injuries and
skin irritation.  Furthermore, the single-lever design limits
allowable commands that can be generated, and is extremely
limiting for people with limited upper extremity function.  Given 
that most patients with limited extremity function (such as victims
of spinal cord injury (SCI) and arthritis) possess the ability to
move their tongue and/or mouth effectively, the potential of the
human oral cavity has been exploited as a source for machine
control signals.  Contemporary examples include inserting a track-
ball, joystick, plastic palate, or “sip-and-puff” straw into the

mouth of an individual with the tongue or lips providing control
input. These devices, however, are extremely intrusive, irritate 
the mouth, impair verbal communication, present hygiene issues,
and are also limited signal generation capacity.  The goal of our
work is to develop a patient-generated control strategy which can
overcome the deficits of these existing systems. Specifically, it is 
our intention to develop a non-intrusive tongue-movement based
machine interface without the insertion of any device within the
oral cavity.  We introduce a unique strategy for detecting tongue
movement through the monitoring of air pressure changes within 
the ear canal.

The focus of this paper is a new means of detecting 
tongue movement in order to generate input signals that can be 
used for “hands-free” control of devices (such as a wheel chair) in 
human-machine interface applications.  Our on-going invest-
igations have shown that various movements within the oral
cavity create unique traceable pressure changes in airflow within
the ear canal that can be measured with a simple pressure sensor
(e.g. microphone) placed in the ear.  Individuals with limited
upper extremity control can use the output of the microphone as
an effective means to communicate with a computer and/or to
control electro-mechanical assist devices (e.g. a power
wheelchair).  Patients suffering from spinal cord injuries (SCI), 
repetitive strain injuries (RSI), severe arthritis, loss of motion due 
to stroke, and central nervous system (CNS) disorders would all
benefit greatly from this concept.  The success of this strategy will
clearly depend on the accurate classification of tongue movements 
based on air flow measured in the ear.  The scope of the paper,
therefore, is to demonstrate that pressure signals in the ear
corresponding to tongue movement are distinct, and can be 
classified accurately.  The detection of the tongue movement 
pressure signals in the ear canal is formulated as a M -class
pattern classification problem in which the classes correspond to
M  distinct tongue movements. Pressure signals resulting from

4M  tongue movements (left, right, up, and down) is used to 
demonstrate the effectiveness of the strategy.

2. SIGNAL ACQUISITION
Figure 1 illustrates a pressure sensor inserted partially into the ear
of an individual (within the cavity defined by the pinna, if not 
deeper within the ear such as within the concha, at the opening of
the ear canal).   The sensor includes a shielding housing and an
internal microphone.  The internal microphone resides on the 
interior portion of the housing within the ear canal at a depth of
2.5 mm to 12.5 mm measured from the opening of the ear canal.
Insertion of the microphone into the ear canal shields pressure 
signals from environmental noise.  The external microphone (not
used in the present study), will be used in future studies to 
monitor and exclude signals from external sources.  Figure 2
shows examples of pressure signals in the ear (sampled at 2 KHz), 
when a subject was asked to touch the tongue lightly to the left, 
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right, top, and bottom of the mouth respectively.  Each movement 
was repeated 100 times, thus each figure has 100 superimposed
signals corresponding to the same tongue movement. 

Fig 1 Pressure signal acquisition system

3. SIGNAL ANALYSIS AND PROCESSING
Conventional signal processing techniques are generally
inadequate to recognize the subtle pressure variations in the ear 
canal resulting from tongue movement. The ear canal itself is an
interference-ridden, noise-amplified environment for acoustic 
recording.  Furthermore, external noise (environmental sounds) 
can easily obscure the slight pressure deviations accompanying
tongue movement. The following two sections enumerate the
steps in our current processing and classification strategy.
Bandpass Filtering and Normalization
The first step in the analysis of the signals in Figure 2 is to 
identify the frequency range of interest in the signals.  The 
averaged PSD of the signals are shown in Figure 3.  It is observed 
that pressure signal activity is approximately in the band 10 to 50
Hz.  Therefore, in the first step of processing, the signals are
bandpass filtered using 10 and 50 as the lower and upper cutoff
frequencies, respectively.  By examining the signals in Figure 2, it
is clear that the signals
have amplitude 
differences within the 
same class and are not
aligned in time. The
signals can be easily
amplitude normalized
by dividing each 
sample of a signal by
the standard deviation
of the samples in the
signal [1]. In the 
generalized
formulation to follow,
let

LiNkkh mim ,...,2,1;,...,2,1),(,

be the ith filtered and amplitude normalized signal of class
Mmm ,...,2,1, ,

where, M is the number of signal classes, Nm is the number of 
samples, and L is the number signals in each class (assumed equal 
for convenience).

Signal Estimation
Signal averaging is one of the most frequently used operations to 
estimate signals from the outcomes of a random process [2,3] and
can, therefore, be used to estimate the underlying signal of each
pressure signal class from the amplitude normalized outcomes.
However, directly averaging the signals ,,...2,1),(, Likh im  will 

result in a poor time-smeared estimate because the signals are not 
aligned in time.  The accuracy of the estimate can be improved if
the signals are first aligned in time with a template of each class
and then averaged.  The problem, however, is that the templates
are not available because the true pressure signals are unknown.
A pairwise cross-correlation based averaging procedure is 
introduced to first generate an initial signal template for each class
and then use the initial template to align signals and estimate the
signal of each class.  If L  is assumed to be an integer power of 2,

the average Mmkh Lm ,...,2,1),(,  of the L  signals can be 

computed as:
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is the mean of the second half of the L  signals.  By further
decomposing the first half and second half of the signals into
equi-sized sets of size ( L /4), the means can be computed as
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The L  signals can be decomposed into successively smaller sets
until pairs of signals are left.  The signals in each pair are
averaged by aligning the sequences in the position of maximum
cross-correlation.  The means of the pairs are combined in a
pairwise fashion according to the steps outlined above to

determine Mmkh Lm ,...,2,1),(, .   The initial template for each 

class is formed by identifying the start- and end-points of the

tongue action in )(, kh Lm  and extracting the signal segment

between these two points.  If the start- and end-points in the initial 
template are denoted by  and b , respectively, each signala

,,...2,1),(, Likh im  is segmented by aligning it with the initial

template in the maximum cross-correlation position and 
multiplying it with a rectangular window .  That is, the

segmented signals are given by

)(, kR ba

MmLikRkh baim ,...,2,1;,...,2,1),()( ,, .

If )1( abN , then, the N samples of the segmented signals

are re-ordered and represented by .  The final

estimate

Nkkv im ,...,1),(,

Mmkhm ,...,2,1),( , of the signal for each action class

can be estimated by averaging the segmented signals
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Fig 3. Averaged PSDs of the signals in Figure 2.
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Fig 2. Pressure signals for the 4 different tongue movements.
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Nkkv im ,...,1),(, . Figure 4 shows estimates of the signals of 

the 4 action classes computed using .64L

4.  CLASSIFICATION STRATEGIES
Given the egmented signals belonging to the M  classes, different
classification methodologies can be applied to detect the classes 
of the signals.  In this study, matched filtering, autoregressive
modeling, and non-linear alignment methods are developed to 
determine the signal classes.
Matched Filter
A matched filter can be designed to detect a signal buried in noise 
under the conditions that the signal is known and the noise is 
stationary.  The matched filter is designed to maximize the output
signal-to-noise ratio at the time instant .  If it is assumed
that the noise is white, then, the matched filter

  is given by

Nk

Mmkhm ,...,2,1),(

NkkNhkh mm ,...,2,1),()(

That is, the unit sample response is the signal reversed in time and 
delayed by samples.  The response of each matched filter to
an input test signal represented by  is 

computed and the test signal is assigned to the class of the 
matched filter that yields the maximum value at time .  That is,
if  is the response of  to 

N
NkktT ,...,2,1),(

N
,,...,2,1),( MmNym )(khm T  at 

, then,Nk T  is assigned to the class  given by*m

)]([arg* NyMAXm m
m

Autoregressive (AR) Modeling
The underlying generation of the pressure signals of each action
can be modeled by an AR process of the form 

)()()( ,
1

,,,,, ijkvkv im
p

j
imjimimim

and the model parameters ( imimjim ,,,, /, ) can be used as

features for signal classification.  If it is assumed that the class
conditional density functions of the AR feature vector are
Gaussian with mean vector m  and covariance matrix m , the

discriminant function of the resulting Gaussian classifier for class
, assuming equal prior probabilities, is given bym

)(ln)}()(||){ln2/1()( 1 mPTTTD mm
T

mmm

where,  is the class prior probability. For this case, the test

signal  is assigned to the class   given by

)(mP

T *m

)]([arg* TDMAXm m
m

Non-linear Alignment
Various alignment-based methods can also be formulated to
determine the similarity of a test signal and a template of a signal
[1,2].  Non-linear alignment, also called dynamic alignment,
optimally aligns two signals to compensate for non-linear
expansions and compressions in signal segments and also to 
compensate for duration differences.  In the design of non-linear
alignment classifiers, the goal is to determine a mapping
between the time-index  of a test signal  and the time-

index  of a reference signal 

W
p )( pt

q )(qhm  such that the best alignment

between the two sequences is obtained.  The mapping
)](),...,2(),1([ ZwwwW

 where
)](),([)( zjzizw ;

Zzzip ,...,2,1),( ; ,,...,2,1),( Zzzjq

defines a piecewise linear alignment path in the  plane.
Both time axes are transformed into a common time axis  of
length

),( qp
z

Z .  When there is no timing difference between the
sequences, the warping path coincides with the diagonal line

)( qp .  The best alignment path is given by determining 
that minimizes

W

Z

z
m zjhzitdD

1
))](()),(([

where  is the total accumulated distance between  andD )( pt

)(qhm  along W  and  is the local distance between the

samples

],[ yxd

x  and .  Examples of local distance metrics include
the absolute difference and the difference-squared norm.  In order
to restrict W in a meaningful manner in the  plane, end-

point, continuity, and slope constraints are imposed on W  [1,2].
If  is the aligned distance between a test sequence T  and 

a reference sequence

y

),( qp

)(TDm

Mmqhm ,...,2,1),( , then, the test

sequence is assigned to the class  given by*m

)]([arg* TDMINm m
m

5.  EXPERIMENTS AND RESULTS
Pressure data corresponding to 4 tongue movements:  touching the
tongue lightly to the left, right, top, and bottom of the mouth were
recorded to design and evaluate the strategy. Each movement was
repeated 100 times; therefore, each tongue movement class had
100 pressure signals.  Each signal was bandpass filtered and
segmented ( =800) as described in Section 3.  The signals were
randomly partitioned into 2 mutually exclusive and equal-sized 
sets to generate a design set and a test set for each class.  For each 
signal class, the signal estimated from the training set was used as
the reference template for non-linear alignment and to determine
the unit sample response of the matched filter.  The AR model
parameters for each signal class were determined from the signals 
in the respective training set using the Yule-Walker
autocorrelation method.  The model order

N

10p  was
determined empirically.  The random resampling approach
described in [1,3] was used to generate  design and test set 
pairs.  Each pair is referred to as a trial and the classification
accuracies were estimated over =100 trials.  Each trial 
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Fig 4. Estimates of the 4 pressure signals.
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consisted of testing 50 test signals from each class, therefore, the
classification accuracy was estimated by testing (100x50x4) =
20,000 signals. 

6. CONCLUSIONS
The goal of this paper was to develop a signal processing strategy
to demonstrate that the pressure changes in air flow that occur in
the ear canal due to tongue movement are distinct and that they 
can be detected accurately.  PSD analysis was conducted to
determine the frequency range of the pressure signals in order to 
design bandpass filters.  A pairwise cross-correlation based
averaging procedure was developed to obtain initial estimates of
the pressure signals corresponding to the tongue movements.
Start- and end-points in the initial template were identified and the
signals were segmented between the end-points in the position of
maximum cross-correlation with the initial template.  A final
estimate of the signal of each class was obtained by averaging the
segmented signals.  Three different classification methods were 
implemented to classify the signals.  The matched filter and non-
linear alignment classifier made use of the signal estimates for the
unit sample responses and the reference templates, respectively.
The parameters of the AR-Gaussian parametric classifier were
estimated directly from the segmented signals in the training set.
The results from experiments conducted on four tongue
movements show that all three classifiers yield good results.  The 
best results were obtained using non-linear alignment which
yielded classification accuracies of over 97%. 

For convenience, the 4 pressure signal classes: left, 
right, up, and down, are represented by m=1, 2, 3, and 4,
respectively. The matched filter, AR model, and non-linear
alignment classification results, assuming equal prior
probabilities, are presented in Tables 1, 2, and 3, respectively.
The tables show confusion matrices as well as the classification
accuracies.  The confusion matrix part of the results can be
interpreted by examining the first row of Table 2 which shows
that out of the 5000 tests conducted with signals vectors drawn
from class 1, 89.18% were classified correctly as belonging to
class 1, 0.12% were misclassified as class 2, 9.98% were
misclassified as class 3, and 0.71% were misclassified as class 4.
The results show that an average classification accuracy of
90.86%, 85.06%, and 97.72% can be achieved by the matched
filter, AR model classifier, and the non-linear alignment classifier,
respectively.

The performance of the non-linear alignment classifier,
which can compensate for non-linear variations, is superior to that 
of the matched filter which is essentially a cross-correlator.
Cross-correlators are not capable of accommodating duration and
non-linear variations. The performances of the non-linear
alignment classifier and the matched filter are superior to that of
the AR model classifier which compresses the 800 samples into a
small set of 10 model parameters that are used as features.

7.  FUTURE WORK 
Current investigations are focused on the analyses and
classification of a wider range of tongue actions and issues related
to the practical application of this strategy.  These issues include:
(a) real-time detection of the onset of the tongue movement in the 
pressure signals, (b) filtering to isolate pressure signals from other
bodily signals and external noise, and (c) determining the most
suitable classification strategy, in terms of accuracy and speed, for
real-time applications.  We are presently targeting commercial
applications for this technology including wheelchair control for 
quadriplegic users, [4], and robotic device control.

  TABLE 1  Matched Filter
m 1 2 3 4

In summary, the results for the 4 tongue actions are 
highly encouraging.  Based on these results as well as the results
from our on-going investigations, it is concluded that the unique
signal processing strategy developed for classifying air flow 
pressure signals in the ear canal will make hands-free control of 
devices using tongue movements a practical reality.
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1 100 0 0 0

2 6.06 64.45 28.28 1.01

3 0 0 100 0

4 1.01 0 0 98.99

Class. Accuracy = 90.86% 

  TABLE 2  AR-Gaussian

m 1 2 3 4

1 89.18 0.12 9.98 0.71

2 0 77.24 0.08 22.67

3 17.51 1.94 78.33 2.22

4 0.20 0 4.33 95.47

Class. Accuracy = 85.06% 

  TABLE 3  Non-linear Alignment

m 1 2 3 4

1 100 0 0 0

2 1.01 94.94 0 4.04

3 0 0 97.97 2.02

4 1.01 0 1.01 97.97

Class. Accuracy = 97.73% 
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