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ABSTRACT

We present discrete stochastic optimization algorithms that
adaptively learn the Nernst potential in membrane ion chan-
nels. The proposed algorithms dynamically control both the
ion channel experiment and the resulting Hidden Markov
Model (HMM) signal processor and can adapt to time-varying
behaviour of ion channels. One of the most important prop-
erties of the proposed algorithms are their its self-learning
capability – they spends most of the computational effort at
the global optimizer (Nernst potential).

1. INTRODUCTION

An ion channel is a hole or pore in a nerve cell membrane.
In physical structure, an ion channel is a large protein molecule
whose different configurations correspond to the ion chan-
nel being in a closed state or open state. The measure-
ment of ionic currents flowing through single ion channels
in cell membranes has been made possible by the giga-seal
patch-clamp technique [1]. This was a major breakthrough
for which the authors of [1] won the 1991 Nobel prize in
Medicine. Because all electrical activities in the nervous
system, including communications between cells and the
influence of hormones and drugs on cell function, are regu-
lated by membrane ion channels, understanding their mech-
anisms at a molecular level is a fundamental problem in bi-
ology. Ion channel currents are typically of the order of
pico-amps (i.e. , 10−12 amps). In patch clamp experiments
these minute ion channel currents are obfuscated by large
amounts of thermal noise. Chung et al. [2] first intro-
duced the powerful paradigm of Hidden Markov Models
(HMMs) to characterize patch-clamp recordings of small
ion channel currents contaminated by random and determin-
istic noise. By using sophisticated HMM signal processing
methods, [2] demonstrated that the underlying parameters
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of the HMM could be obtained to a remarkable precision
despite the extremely poor signal to noise ratio.

In this paper, we address the deeper and more funda-
mental problem of how to adaptively learn and control the
behaviour (open state current level) of a single ion chan-
nel in a nerve cell membrane. By using recent state-of-the
art methods from the electrical engineering disciplines of
discrete-event-systems and stochastic control, we develop
algorithms to adaptively control the applied voltage to a
patch clamp experiment in order to dynamically learn the
so called “Nernst” potential and current-voltage character-
istics of the ion channel.

I-V Curve and Nernst Potential: Ion channel current
measurements from a patch clamp experiment (after suit-
able anti-aliasing filtering and sampling) shows that the chan-
nel current is piecewise constant discrete time signal that
randomly jumps between two values – zero amperes which
denotes the closed state of the channel, and I(v) amperes
which denotes the open state. I(v) is called the open-state
current level. The open state current level I(v) depends on
the voltage v that is applied by the experimenter to the ion
channel. Let {in(v)} denote the discrete-time ion chan-
nel current sequence. In characterizing different types of
ion channels, neurobiologists routinely construct current-
voltage (I-V) curves. The curve represents the variation of
the open state current level I(v) of the ion channel as a func-
tion of the applied voltage value v. Such I-V curves yield
a unique signature of a particular ion channel, revealing its
operating characteristics. The zero point of the I-V curve,
i.e. , the voltage v∗ at which the open state current level
I(v∗) is zero, is known as the Nernst potential. The Nernst
potential gives information about the relative concentrations
at the two faces of the ionic channel. The value of the open
state current level I(v) is described by the Nernst-Planck
equation that combines Ohm’s and Fick’s laws.

Our approach: The aim of this paper is to propose al-
gorithms that efficiently learns the I-V curve from the noisy
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observed channel current sequence {yn(v)} by dynamically
controlling the applied voltage v. The proposed algorithm
dynamically controls (schedules) the choice of voltage v at
which the ion channel operates in order to efficiently esti-
mate the Nernst potential (zero current point) and deduce
how the current increases or decreases as the applied volt-
age deviates from the Nernst potential. Thus at a given
time instant, given the current estimate from a HMM esti-
mator operating at a particular voltage, the aim is to devise a
scheduling algorithm that dynamically decides which volt-
age value to pick at the next time instant to apply to the ion
channel. The most important aspect of the resulting com-
bined experiment scheduling/HMM estimation algorithm is
its self learning capability – it is provably convergent to the
Nernst potential estimate and is provably efficient – that is
the algorithm spends more time running the ion channel at
the Nernst potential than any other voltage. These learning
algorithms are based on recent discrete stochastic approxi-
mation algorithms that have recently been developed in the
operations research literature [3, 4].

2. ION CHANNEL MODEL

Since our aim in this paper is to adaptively learn and con-
trol the behaviour of an ion channel current modelled as
a HMM, in this subsection we formally define the HMM
for the ion channel current and briefly describe MLE algo-
rithms for HMMs. Such probabilistic models for ion chan-
nels based on HMMs are now widely used [2, 5].

Markov Model for Ion Channel Current: Suppose a
patch clamp experiment is conducted with a voltage v ap-
plied across the ion channel. Then, as described in [2, 5], the
ion channel current {in(v)}, can be modelled as a three state
homogeneous first order Markov chain. The state space
of this Markov chain is {0g, 0b, I(v)} corresponding to the
physical states of gap mode, burst-mode-closed and burst-
mode-open. For convenience, we will refer to the burst
mode closed and burst-mode-open states as the open and
closed states, respectively. In the gap mode and the closed
state the ion channel current is zero. In the open state, the
ion channel current has a value of I(v).

The (3 × 3) transition probability matrix A(v) of the
Markov chain {in(v)}, which governs the probabilistic be-
haviour of the channel current, is given by

A(v) =

0g 0b I(v)
0g a11(v) a12(v) 0
0b a21(v) a22(v) a23(v)

I(v) 0 a32(v) a33(v)

(1)

The elements of A(v) are the transition probabilities a ij(v) =
P (in+1(v) = j|in(v) = i) where i, j ∈ {0g, 0b, I(v)}. The
zero probabilities in the above matrix A(v) reflect the fact
that a ion channel current cannot directly jump from the gap

mode to the open state, similarly an ion channel current can-
not jump from the open state to the gap mode.
HMM Observations: Let {yn(v)} denote the measured
noisy ion channel current at the electrode when conducting
a patch clamp experiment:

yn(v) = in(v) + wn(v), n = 1, 2, . . . (2)

Here {wn(v)} is thermal noise and is modelled as zero mean
white Gaussian noise with variance σ2(v). Thus the obser-
vation process {yn(v)} is a Hidden Markov model sequence
parameterized by the model λ(v) = {A(v), I(v), σ2(v)}
where v denotes the applied voltage.
HMM Parameter Estimation of Current Level I(v): Given
the HMM mode for the ion channel current above, estimat-
ing I(v) for a fixed voltage v, involves processing the noisy
observation {yn(v)} through a Hidden Markov Model max-
imum likelihood parameter estimator. The most popular
way of computing the maximum likelihood estimate (MLE)
I(v) is via the Expectation Maximization (EM) algorithm
(Baum Welch equations). Let Î∆(v) denote MLE of I(v)
based on the ∆-point measured channel current sequence
(y1(v), . . . , y∆(v)). For sufficiently large batch size ∆ due
to the asymptotic normality of the MLE for a HMM [6],√

∆
(
Î∆(v) − I(v)

)
∼ N(0, Σ(v)) where Σ−1(v) is the

Fisher information matrix. Asymptotically Î∆(v) is an un-
biased estimator of I(v), i.e. , E{Î∆(v)} = I(v).

3. DISCRETE STOCHASTIC OPTIMIZATION
BASED HMM ALGORITHM

3.1. Discrete Stochastic Optimization Problem

Determining the Nernst potential v∗ requires conducting ex-
periments at different values of voltage v. In patch clamp
experiments, the applied voltage v is chosen from a finite
set. Let v ∈ V = {θ(1), . . . , θ(M)} denote the finite set
of possible voltage values that the experimenter can pick.
Determining v∗ ∈ V can be formulated as a discrete opti-
mization problem: v∗ = argminv∈V |I(v)|2. Due to the
presence of large amounts of thermal noise, I(v) cannot
be exactly evaluated and only unbiased estimates Î(v) are
available. Computing the Nernst potential is equivalent to
the following discrete stochastic optimization problem:

Compute v∗ = arg min
v∈V

[
E{Î(v)}

]2

(3)

where Î(v) is the MLE of the parameter I(v) of the HMM.
Since no closed form expression is available for the above
expectation, we need to develop a simulation based (stochas-
tic approximation) algorithm.
HMM Brute Force Approach: A brute force approach for
solving (3) involves an exhaustive enumeration as follows:
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For each v ∈ V , run an independent experiment to gather
the sample path {y1(v), y2(v), . . . , y∆(v)} for a very large
batch size ∆. Compute the MLE Î(v) via a HMM parame-
ter estimator. Finally pick v̂∗ = arg minv∈V |Î(v)|2. Since
for any fixed v ∈ V , the MLE Î(v) is strongly consistent
[6], Î(v) → I(v) w.p.1, as the batch size ∆ → ∞. Thus

arg min
v∈V

(
Î(v)

)2 → arg min
v∈V

(
I(v)

)2
w.p.1. (4)

Thus in principle, the above brute force simulation method
can solve the discrete stochastic optimization problem (3)
for large ∆ and the estimate is consistent, i.e. , (4) holds.
However, it is highly inefficient since Î(v) needs to be eval-
uated for each v ∈ V . The evaluations of Î(v) for v �= v∗

are wasted because they contribute nothing to the estimation
of i(v∗) at the Nernst potential v∗.

3.2. Discrete Stochastic Approximation Algorithm

We propose a discrete stochastic approximation algorithm
that is both consistent (i.e. , (4) holds) and attracted to the
Nernst potential. That is, the algorithm should spend more
time gathering observations {yn(v)} at the Nernst potential
v = v∗ and less time for other values of v ∈ V . Thus in
discrete stochastic approximation the aim is to devise an ef-
ficient adaptive search (sampling plan) which allows to find
the minimizer v∗ with as few samples as possible by not
making unnecessary observations at non-promising values
of v.
Notation: Let n = 1, 2, . . . denote discrete time. Group
the discrete time into batches of length ∆ – typically ∆ =
10, 000 in experiments. Let N = 1, 2, . . . denote batch
number, batch N comprises of the ∆ discrete time instants
n ∈ {N∆, N∆ + 1, . . . , (N + 1)∆ − 1}. Let DN =
(DN (1), . . . , DN(M))′ denote the vector of duration times
the algorithm spends at the M possible potential values in
V . Finally define the M dimensional unit vectors, em, m =
1, . . . , M as em =

[
0 · · · 0 1 0 · · · 0

]′
with 1 in

the m-th position and zeros elsewhere.
The discrete stochastic approximation algorithm of [3]

is not directly applicable to the cost function (3) – since it
applies to optimization problems of the form minv∈V E{C(v)}.
However, (3) can easily be converted to this form as fol-
lows: Let Î1(v), Î2(v) be two statistically independent un-
biased HMM estimates of I(v). Then defining Ĉ(v) =
Î1(v)Î2(v), it straightforwardly follows that E{Ĉ(v)} =[
E{Î(v)}

]2

= |I(v)|2. We propose the following discrete

stochastic approximation algorithm:

Algorithm 1 [Algorithm for Learning Nernst Potential ]
Step 0: (Initialization.) At batch-time N = 0, select
starting point X0 ∈ {1, . . . , M} randomly. Set D0 = eX0 ,
Set initial solution estimate v̂∗

0 = θ(X0).

Step 1: (Sampling.) At batch-time N , sample X̃N ∈
{XN − 1, XN + 1} with uniform distribution.
Step 2: (Evaluation and Acceptance.) Apply voltage
ṽ = θ(X̃N ) to patch clamp experiment. Obtain two ∆
length batches of HMM observations. Let Î

(1)
N (ṽ) and Î

(2)
N (ṽ)

denote the HMM-MLE estimates for these two batches which
are computed using the EM algorithm of Appendix A. Set
ĈN (ṽ)) = Î

(1)
N (ṽ)Î(2)

N (ṽ).
Then apply voltage v = θ(XN ). Compute the HMM-

MLE estimates for these two batches, denoted as Î
(1)
N (v)

and Î
(2)
N (v). Set ĈN (v)) = Î

(1)
N (v)Î(2)

N (v).
If ĈN (ṽ) < ĈN (v), set XN+1 = X̃N , else, set XN+1 =

XN .
Step 3: (Update occupation probabilities of XN .) DN+1 =
DN + eXN+1

Step 4: (Update estimate of Nernst potential.) v̂∗
N =

θ(m∗) where m∗ = arg maxm∈{1,...,M} DN+1(m), set N →
N + 1, go to Step 1.

Above v̂∗
N denotes the estimate of the Nernst potential at

batch N . We will show below that v̂∗
N → v∗ w.p.1, meaning

that the algorithm is both attracted to the maximum.

3.3. Convergence and Attraction of Algorithm 1

Throughout this section we assume:
(N) The batch size ∆ is sufficiently large so that Î

(1)
N (v),

Î
(2)
N (v) are N(I(v), Σ(v)) Gaussian random variables.

(O) For m ∈ {1, . . . , M − 1}, I2(θ(m + 1)) > I2(θ(m))

implies P

(
Ĉ(θ(m + 1)) > Ĉ(θ(m))

)
> 0.5. I2(θ(m +

1)) < I2(θ(m)) implies P

(
Ĉ(θ(m + 1)) > Ĉ(θ(m))

)
<

0.5.

Theorem 1 Under the condition (O) above, the sequence
{θ(XN )} generated by Algorithm 1 is a homogeneous, ape-
riodic, irreducible Markov chain with state space V . Fur-
thermore, Algorithm 1 is attracted to the Nernst potential
v∗, i.e. , for sufficiently large N , the sequence {θ(XN )}
spends more time at v∗ than an other state.

PROOF. Given that the objective function is exactly of
the form of the cost function in [3], we only need to ver-
ify condition (O). It then follows from [3, Theorem 2.1]
that Algorithm 1 converges to a local minimum. However,
I(v) is a monotonically increasing function of v. Hence
I2(v) has only a single minimum which is the global min-
imum. Thus under condition (O), Algorithm 1 converges
to the Nernst potential. To verify condition (O), recall that
Ĉ(v) = Î1(v)Î2(v) where Î1(v), Î2(v) ∼ N(I(v), Σ(v))
due to normality assumption (N). Expanding out Ĉ(v) =
Î1(v)Î2(v) yields Ĉ(v) = I2(v) + W (v) where W (v) is a
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zero mean random variable with symmetric probability den-
sity function. Condition (O) then holds as proved in Lemma
3.1 of [7] for symmetric probability density functions. �

4. NUMERICAL RESULTS

We simulated sample paths of the ion channel current {in(v)}
as a Markov chain with transition probability matrix A (see
(1)) and open state current level I(v). Here

A =

⎡
⎣0.97 0.03 0

0.3 0.6 0.1
0 0.1 0.9

⎤
⎦ (5)

The observed channel current at the electrode was simulated
by adding white Gaussian noise with σ(v) = 0.3 to the ion
channel current sequence {in(v)}, resulting in the HMM
sequence {yn(v)} (see (2)).

We used Algorithm 1 to determine the Nernst potential
v∗. Experiments were run over batch sizes ∆ = 10, 000. At
Step 0, we selected the starting point at X0 = 1, i.e. , initial
applied voltage v = −160 mV. In Step 2, the EM algorithm
was run for 500 iterations on each ∆-length batch of HMM
observations. As described at the end of Sec.3.2, this takes
only about 0.002 secs on a 2 GFlop Pentium 4. The resulting
MLEs for the 4 batches, namely Î

(1)
N (ṽ), Î

(2)
N (ṽ), Î

(1)
N (v)

and Î
(2)
N (v) were used to determine ĈN (ṽ) and ĈN (v).

Fig.1 shows the Nernst potential estimates v̂∗
N generated

by Algorithm 1 for batch-times N = 0, 1 . . . , 10000. As
can be seen, the estimate v̂∗

N rapidly converges to the Nernst
potential v∗ = −64 mV.

To illustrate the attraction (learning) property of Algo-
rithm 1, i.e. , it spends more time gathering information near
the Nernst potential than other voltages, Fig.2 shows the oc-
cupation probabilities computed by Step 3. As shown in
Fig.2, Algorithm 1 spends approximately 14% of its time at
the Nernst potential. In comparison, a brute force HMM ap-
proach would spend equal resources at all voltages v ∈ V ,
i.e, its would spend 1/320 of its time at the Nernst poten-
tial v∗. Thus Algorithm 1 is approximately 45 times more
efficient than the brute force HMM approach. Equivalently,
to get equally accurate estimates of the Nernst potential, the
brute force HMM approach requires the patch clamp exper-
iment to be run 45 times longer than the controlled patch
clamp experiment that uses Algorithm 1.
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