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ABSTRACT

Fisher’s Discriminant Analysis has recently shown promise in di-
mensionality reduction of high dimensional DNA data. However,
the one-dimensional projection provided by this method is an op-
timal Bayesian classifier only when the intraclass data patterns are
purely Gaussian distributed. Unfortunately, it has been well recog-
nized that most DNA expression data are much more realistically
represented by a Gaussian mixture model (GMM), which allows
for multiple cluster centroids per class. When a data set from such
a GMM is projected onto a one-dimensional subspace, its inherent
multi-modal nature may be partially or completely obscured. Con-
sequently, traditional Fisher DA is quite inadequate when higher
dimensional visualization (e.g. 2-D or 3-D) is necessary. The pro-
posed technique addresses this problem and makes use of com-
bined supervised and unsupervised learning techniques for several
DNA microarray signal processing functions, including intraclass
cluster discovery, optimal projection, and identification/selection
of responsible gene groups. In particular, a cross-weighted Fisher
Discriminant Analysis is proposed and its abilities to reduce di-
mensionality and to visualize data sets are evaluated.

1. INTRODUCTION

For cancer treatment, it is now well recognized that cancers with
histopathologically similar appearance may follow significantly dif-
ferent clinical courses and show different responses to therapy. It is
therefore important to target specific therapies to pathogenetically
distinct cancer types or subtypes so as to maximize efficacy and
minimize toxicity. Recent developments in gene microarray tech-
nology provide us with large sets of high-dimensional gene expres-
sion data useful in such classification and prediction tasks. Briefly,
DNA microarray experiments yield a number of gene expression
intensity values (scalars) for each of a set of tissues in question. In
general, the resulting gene expression levels are numerous (on the
order of 104 or higher) and have very high resolution. The number
of samples (i.e. patient dimension), however, is relatively small
(e.g. < 100).

In this paper, our goal is to develop and test effective machine
learning computational and visualization tools to reveal and inter-
pret the rich information derived by microarrays about underlying
cancer biology. Furthermore, we wish to facilitate molecular clas-
sification/prediction of known cancer types and the discovery of
new types. Given a set of DNA microarray data and correspond-
ing class knowledge, we identify two distinct objectives pivotal to
our understanding of class prediction and discovery:

1. Gene Pre-selection: find a subset of the genes that provides
the most information regarding sample classification.

2. Optimal Visualization Projection: choose the projection of
this subset of genes that yields the most distinction between
classes.

1.1. Data Clustering Models

The formulation of a learning mechanism that achieves a visualiza-
tion or class prediction goal is inherently tied to the assumptions
on the underlying data distribution. For instance, optimality of a
particular classification/visualization criterion for one type of dis-
tribution may not necessarily correspond to optimality under the
assumption of a different distribution. Thus, choosing a criterion
is closely linked to choosing the correct cluster model for a partic-
ular data set. Note that the terms class and cluster are used with
very distinctive meaning in this paper. We use class to refer to
a particular pathological type, and cluster to refer to an arrange-
ment of samples (e.g. patient tissues) within a single class. Two
common models for distributions of clusters within a given class
are:

1. Single-Cluster Gaussian Model: Within a class, the sim-
plest model is a single-cluster Gaussian distribution. The
advantage of such a simple statistic model is twofold: (1) It
is straightforward to estimate the density parameters (cen-
troid and covariance) for each class. (2) Such a simple clus-
ter model leads to a closed-form optimal Bayesian classifier
known as the Fisher classifier [4].

2. Multiple-Cluster Gaussian Mixture Model: Most DNA
gene expression data do not fit the aforementioned single-
cluster Gaussian model. Indeed, they can be much more ac-
curately modelled via a GMM (or SFNM) model [7, 8], i.e.
the distribution of the data set within each class is modelled
as a mixture of multiple normal distributions (with possibly
different means and covariances).

For a multi-cluster GMM distribution, the Fisher classifier is no
longer an optimal Bayesian classifier. Therefore, novel pre-selection
and projection techniques must be developed. In general, three
subtasks will be required for both:

• Estimation of density parameters and overall mixture: A
popular clustering method can be applied for this purpose,
e.g. the k-means or EM algorithms. Introducing user in-
teraction into the clustering algorithm is a more practical
approach, which greatly reduces both computational com-
plexity and local optimum likelihood [5].

• Selection of an optimal number of clusters within a class:
The following two approaches are worthy considerations.

1. Information theoretic metrics, such as AIC or MDL
[9, 7, 8].
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2. Robustness metric: The number of clusters is also
tightly coupled with the cluster mass, i.e. the larger
number of clusters the smaller the average cluster mass.
The choice of cluster mass depends on the desired
classification objectives. If the strategy is to achieve
a robust classification, then the Fisher’s DCA based
on the single-cluster Gaussian model is superior. In
contrast, multiple-cluster GMM will be preferred if
the strategy is to display the fine cluster structure and
e.g. yield a minimum error rate at the expense of ro-
bustness.

• Design of an effective pre-selection/projection criteria re-
flecting new GMM assumption as the traditional DCA is no
longer a statistically optimal solution.

Without loss of generality, we focus on the two-class case,
with multiple clusters per class.

1.2. Supervised vs. Unsupervised Learning

Throughout our analysis, we assume that we are able to obtain
class information (known phenotypes from biological experimen-
tal setting). However, within-class structure is treated as unsuper-
vised learning as is suggested in the previous section. This hy-
brid supervised/unsupervised learning strategy resembles that pro-
posed in [7, 8], where the (supervised) DCA approach is shown
to be very effective on hierarchical sub-levels when some super-
vision is passed down from upper-level processing. While those
results suggest that a small amount of supervision complements
a mostly unsupervised approach, the present paper will demon-
strate that intra-class unsupervised clustering (e.g. k-mean or EM
methods) can be instrumental in revealing fine cluster structure for
the supervised problem. Both suggest that such hybrid approaches
provide useful insight that may otherwise be missed.

1.3. Pairwise Fisher Linear Discriminant

For future reference, we introduce the notion of a pairwise Fisher
Linear Discriminant. Given a pair of clusters1, say, cluster α (from
class 1) and cluster β (from class 2) with means mα, mβ , and co-
variances Sα, Sβ respectively, the goal of Fisher’s discriminant is
to find the linear projection, w, that maximizes the contrast crite-
rion J(w), the ratio of inter-cluster distance to intra-cluster vari-
ance:

Jα,β(w) = wT M(α, β)w;

M(α, β) ≡ S−1
αβ(mα − mβ)(mα − mβ)T , (1)

where ‖w‖ = 1 and Sαβ ≡ PαSα+PβSβ

Pα+Pβ
.

The quantity Jα,β(w) represents the pairwise Fisher discrim-
inant power of clusters α and β along the projection direction w.
The pairwise Fisher discriminant power, defined as the maximum
value of Jα,β(w), is well known to be

max
w

Jα,β(w) = λM(α,β), (2)

1Note that Fisher’s Linear Discriminant has been traditionally applied
to a pair or set of multiple classes. Here, we propose such a discriminant
be defined between pairs of clusters, where each cluster is a member of
particular class.

where λM(α,β) denotes the largest eigenvalue of the matrix M(α, β).
The corresponding optimal projection is therefore along the direc-
tion of the principal eigenvector:

wopt = S−1
αβ(mα − mβ). (3)

2. GENE PRE-SELECTION

Before attempting visualization or class prediction for a particular
data set, we first want to identify those genes that are most infor-
mative with regard to the sample classification (gene pre-selection).
Without class information, gene selection can be done by either
simply choosing those genes with highest minimal intensity across
the samples, or pursuing more sophisticated data separability cri-
teria via projection pursuit (PP) or independent component anal-
ysis (ICA) [7, 8]. In contrast, when class information is known,
Fisher’s discriminant criterion is commonly recognized to be most
effective in measuring the interclass separability.

2.1. Individual Gene Pre-selection by Fisher Discriminant

We propose that Fisher’s discriminant power (see 2) is not only
useful in obtaining a 1-D projection, but is a convenient metric
for the separability offered along a single gene dimension. Our
pre-selection approach entails computing Jα,β(w) (a scalar) along
each gene dimension (i.e. w = [0, . . . , 0, 1, 0, . . .]) where α, β
now refer to class 1 and class 2 (no within-class cluster information
is used). The resulting values for each gene can then be used as a
basis for selecting those genes that are most indicative of class
distinction.

2.2. Cross-Weighted Ambiguity Function

Because Fisher’s discriminant is not optimal for a GMM assump-
tion, we also propose a variation of the aforementioned pre-selection
scheme. We need to first perform unsupervised clustering (e.g. k-
mean or EM algorithm) for each gene’s 1-D expression space. It
should be obvious that class separability depends most critically
on the pair(s) of closest cross-class clusters. Thus, just like SVM,
for maximizing class separability, special attention should be paid
to the border clusters. Note that, for the 1-D case, Jα,β(w) =
M(α, β) degenerates into a scalar value. For a pair of clusters,
M(α, β)−1 offers as an effective measure of pairwise ambiguity.
(In other words, the ambiguity is inversely proportional to the dis-
tance of any cross-class cluster-pair.) Accordingly, we propose to
use the following total ambiguity metric:

ambiguity =
∑
αεC1

∑
βεC2

PαPβM−1(α, β) (4)

which can be shown to place emphasis on closer cluster-pair(s).
The genes with the least total ambiguity are chosen in the pre-
selection process.

2.3. Hybrid Selection Scheme

In general, the Fisher DCA pre-selection approach offers more ro-
bustness while the cross-weighted ambiguity scheme places heav-
ier weights on the closer inter-class cluster-pairs. A safe strategy is
to choose the genes which exhibit good behavior in both accounts.
More specifically, choose those genes which yield maximum

J1,2(g1) +
∑
αεC1

∑
βεC2

PαPβM(α, β) (5)
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Fig. 1. Pre-selection results via Fishers discriminant on individual
genes and hybrid with Cross-weighted ambiguity function (aver-
age of 150 independent simulations).

2.4. Pre-Selection Simulation Results

For testing the three gene selection methods, we generate a syn-
thetic data set consisting of two classes, each with 100 samples and
4 and 5 Gaussian mixtures respectively. Each sample includes 200
gene expression values, with the number of indicator genes vary-
ing as plotted in Fig. 1. For each instance, the number of indicator
genes omitted by the pre-selection stage is recorded. While all
schemes are relatively successful, we find that the cross-weighted
ambiguity metric alone (not shown here) is unable to compete with
the robustness of simple Fisher DCA. The hybrid approach, how-
ever, seems to offer a slight improvement.

3. OPTIMAL PROJECTION FOR VISUALIZATION

The purpose of developing discriminatory data projection tools is
to maximally discover hidden (global and fine) cluster structure in
the data space. The huge dimensionality (500 ∼ 8000) of mi-
croarray data introduces a new challenge in the revelation of data
structure into a 3-D (or lower dimensional) space to support effec-
tive human interactions. In order to find an optimal view for cluster
structure discovery, we have to search the space of possible gene
vectors. We shall first review the traditional Fisher DCA and then
point out why and how it could be modified to better represent the
GMM nature of the DNA gene expression data. In particular, we
have extended a notion of weighted Fisher criteria [6, 7] to a so-
called Cross-Weighted DCA which is meant for class separability
under a supervised learning assumption.

3.1. Fisher DCA and the Fundamental Deficiency

The classification of data samples can be visualized by adopting
the traditional Fisher projection. If class information is known,
then it can be effectively used to provide better guidance for dis-
covering cluster structure. To obtain the best separability between
the two classes, the optimal pairwise Fisher vector w can be de-
rived from (3) with the clusters α and β now representing the two
classes to be identified. As the pairwise Fisher matrix M(α, β) for
two classes (or clusters) in (1) has rank one, the separation can be
only visualized on a 1-D space.

The consideration of using multiple-dimensional data projec-
tion tools is primarily based on the fact that most gene expression
microarray data are a mixture of samples of cancer and non-cancer,
or a mixture of samples of various types of cancers. As a result,
the GMM (or SFNM) model may be the best approach for describ-
ing such multi-modal data structure [3]. However, the Bayesian

optimality claims for pairwise Fisher is no longer valid for the
more general multi-cluster GMM distribution. Another critical de-
ficiency of the traditional Fisher DCA is that it does not suggest
any projection direction beyond one-dimensional subspace.

Example 1 (Illustrative Example)
Let us use a simple two-gene, two-class, and two-clusters-per-
class example to show why the Fisher DCA is not optimal. The
centers are [1, 10], [1, 0] for the two clusters belonging to the
first class and [−1, 0], [−1,−10] for the second class. If the 2-D
data is projected to 1-D space with projection angle θ, the centers
will be cos θ + 10 sin θ, cos θ, − cos θ, and − cos θ − 10 sin θ,
leading to a classification error rate: 0.25[erfc( cos θ+10 sin θ√

2σ
) +

erfc( cos θ√
2σ

)], where σ = 3 denotes the cluster variance. It can be
verified that the Fisher’s linear projection angle is 53◦ with an
error of 21%, while the best projection angle should be 38◦ and
yield a lower error rate 20%.

3.2. Cross-Weighted DCA

In short, the GMM distribution implies that the data points are
most likely forming multi-modal structure. When a GMM data set
is projected onto a one-dimensional subspace, its inherent multi-
modal nature may be partially or completely obscured accord-
ing to Cover’s theorem on the separability of patterns [1]. For-
tunately, the concealed fine cluster structure is often quite visible
via a higher dimensional (2-D or 3-D) display. The deficiency of
traditional Fisher based DCA motivates the cross-weighted DCA
for cluster visualization.

First, k-mean or EM methods are applied to all the preselected
genes to yield an estimate of the center and covariance of each
cluster. In order to find projections that maximizes the cluster-
separability (as opposed to class-separability), we propose a mod-
ified linear discriminant. Again let us adopt the same pairwise
Fisher’s scatter matrix, cf. (1). To highlight the inter-class cluster
separation, a cross-weighted Fisher matrix is introduced:

Mcw =
∑
αεC1

∑
βεC2

γ(∆αβ)PαPβM(α, β), (6)

where ∆αβ =
√

(mα − mβ)T S−1
αβ(mα − mβ) is the weighted

distance between two clusters and γ(∆) = 1
2∆2 erf( ∆

2
√

2
) is a

proper weighting assigned to place more emphasis on closer inter-
class cluster-pairs [6]. This naturally yields the cross-weighted
discriminant function:

Jcw(W) = Trace[WT McwW] (7)

where W is a K × N projection matrix and N is the number of
genes. It is straightforward to show that the best K (say, K = 3)
projection vectors for optimization of Jcw(W are the K principal
eigenvectors of Mcw.

3.3. Hybrid Scheme Using DCA and CW-DCA

In general, the DCA offers more robustness while CW-DCA tends
to reveal more fine structure of the data clusters. Fortunately, DCA
will consume only one of three display dimensions in 3-D visual-
ization. Therefore, a safe (and highly recommended) strategy is to
adopt the following hybrid scheme.

1. Determine the optimal DCA vector, denoted by wf .
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2. Then, we obtain the two best complementary vectors from
the 2 principal eigenvectors of the following deflated CW-
DCA matrix:

Mh = [I − wfwT
f ]Mcw[I − wfwT

f ] (8)

3. The combination of the one DCA vector and two CCW-
DCA vectors will be used as the projection vectors for the
final 3-D display.

Of course, it is also possible that we reverse the order by finding
two CW-DCA vectors first and then find a complementary DCA
solution as the third vector.

3.4. Simulation Results

1. GMM Synthetic Data: A demonstration of the capability
of finding cluster structure by Fisher DCA, Cross-Weighted
DCA, and Hybrid DCA/CW-DCA is first done on the simu-
lated data set discussed in Sec. 2.4 with 500 total genes per
sample, of which 30 are actually class indicators. The re-
sults are illustrated in Figure 2. Note the trade-off between
class separation robustness and fine cluster structure iden-
tification evident in the Fisher DCA and CW-DCA plots.
Also, note the apparent compromise offered by the hybrid
approach.

2. MIT Acute Leukemia Data: To verify each approach with
real DNA microarray data, we obtain leukemia tissue sam-
ple data with class knowledge from [2]. Simulation results
are illustrated in Figure 2. Again, note the additional cluster
structure information provided by both CW-DCA and the
Hybrid DCA/CW-DCA approaches, even when no knowl-
edge of in-class clusters is given.

4. CONCLUSION

Our approach offers a new data visualization method for the reve-
lation of high dimensional and multi-modal DNA microarray data.
The technique optimizes the class separability while revealing lo-
cal cluster structure more effectively. In summary, the DNA mi-
croarray data mining and visualization represents an enormous
challenge and opportunity to information scientists.
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